IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i7d10.1038_s41558-020-0824-y.html
   My bibliography  Save this article

Disproportionate increase in freshwater methane emissions induced by experimental warming

Author

Listed:
  • Yizhu Zhu

    (Queen Mary University of London)

  • Kevin J. Purdy

    (University of Warwick)

  • Özge Eyice

    (Queen Mary University of London)

  • Lidong Shen

    (Queen Mary University of London
    Nanjing University of Information Science and Technology)

  • Sarah F. Harpenslager

    (Queen Mary University of London
    Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB))

  • Gabriel Yvon-Durocher

    (University of Exeter, Penryn Campus)

  • Alex J. Dumbrell

    (University of Essex)

  • Mark Trimmer

    (Queen Mary University of London)

Abstract

Net emissions of the potent GHG methane from ecosystems represent the balance between microbial methane production (methanogenesis) and oxidation (methanotrophy), each with different sensitivities to temperature. How this balance will be altered by long-term global warming, especially in freshwaters that are major methane sources, remains unknown. Here we show that the experimental warming of artificial ponds over 11 years drives a disproportionate increase in methanogenesis over methanotrophy that increases the warming potential of the gases they emit. The increased methane emissions far exceed temperature-based predictions, driven by shifts in the methanogen community under warming, while the methanotroph community was conserved. Our experimentally induced increase in methane emissions from artificial ponds is, in part, reflected globally as a disproportionate increase in the capacity of naturally warmer ecosystems to emit more methane. Our findings indicate that as Earth warms, natural ecosystems will emit disproportionately more methane in a positive feedback warming loop.

Suggested Citation

  • Yizhu Zhu & Kevin J. Purdy & Özge Eyice & Lidong Shen & Sarah F. Harpenslager & Gabriel Yvon-Durocher & Alex J. Dumbrell & Mark Trimmer, 2020. "Disproportionate increase in freshwater methane emissions induced by experimental warming," Nature Climate Change, Nature, vol. 10(7), pages 685-690, July.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:7:d:10.1038_s41558-020-0824-y
    DOI: 10.1038/s41558-020-0824-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0824-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0824-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edoardo Bellini & Raphaël Martin & Giovanni Argenti & Nicolina Staglianò & Sergi Costafreda-Aumedes & Camilla Dibari & Marco Moriondo & Gianni Bellocchi, 2023. "Opportunities for Adaptation to Climate Change of Extensively Grazed Pastures in the Central Apennines (Italy)," Land, MDPI, vol. 12(2), pages 1-22, January.
    2. Yunying Li & Wenjie Fan & Guni Xiang & Zhihao Xu, 2023. "Evaluating the Feedback of the Reservoir Methane Cycle to Climate Warming under Hydrological Uncertainty," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    3. Gerard Rocher-Ros & Emily H. Stanley & Luke C. Loken & Nora J. Casson & Peter A. Raymond & Shaoda Liu & Giuseppe Amatulli & Ryan A. Sponseller, 2023. "Global methane emissions from rivers and streams," Nature, Nature, vol. 621(7979), pages 530-535, September.
    4. Yueyue Si & Yizhu Zhu & Ian Sanders & Dorothee B. Kinkel & Kevin J. Purdy & Mark Trimmer, 2023. "Direct biological fixation provides a freshwater sink for N2O," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yizhu Zhu & J. Iwan Jones & Adrian L. Collins & Yusheng Zhang & Louise Olde & Lorenzo Rovelli & John F. Murphy & Catherine M. Heppell & Mark Trimmer, 2022. "Separating natural from human enhanced methane emissions in headwater streams," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Funing Sun & Wenxuan Hu & Jian Cao & Xiaolin Wang & Zhirong Zhang & Jahandar Ramezani & Shuzhong Shen, 2022. "Sustained and intensified lacustrine methane cycling during Early Permian climate warming," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:7:d:10.1038_s41558-020-0824-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.