IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i10d10.1038_s41558-020-0905-y.html
   My bibliography  Save this article

Phytoplankton dynamics in a changing Arctic Ocean

Author

Listed:
  • Mathieu Ardyna

    (Stanford University
    Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche)

  • Kevin Robert Arrigo

    (Stanford University)

Abstract

Changes in the Arctic atmosphere, cryosphere and Ocean are drastically altering the dynamics of phytoplankton, the base of marine ecosystems. This Review addresses four major complementary questions of ongoing Arctic Ocean changes and associated impacts on phytoplankton productivity, phenology and assemblage composition. We highlight trends in primary production over the last two decades while considering how multiple environmental drivers shape Arctic biogeography. Further, we consider changes to Arctic phenology by borealization and hidden under-ice blooms, and how the diversity of phytoplankton assemblages might evolve in a novel Arctic ‘biogeochemical landscape’. It is critical to understand these aspects of changing Arctic phytoplankton dynamics as they exert pressure on marine Arctic ecosystems in addition to direct effects from rapid environmental changes.

Suggested Citation

  • Mathieu Ardyna & Kevin Robert Arrigo, 2020. "Phytoplankton dynamics in a changing Arctic Ocean," Nature Climate Change, Nature, vol. 10(10), pages 892-903, October.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:10:d:10.1038_s41558-020-0905-y
    DOI: 10.1038/s41558-020-0905-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0905-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0905-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chelsea W. Koch & Thomas A. Brown & Rémi Amiraux & Carla Ruiz-Gonzalez & Maryam MacCorquodale & Gustavo A. Yunda-Guarin & Doreen Kohlbach & Lisa L. Loseto & Bruno Rosenberg & Nigel E. Hussey & Steve H, 2023. "Year-round utilization of sea ice-associated carbon in Arctic ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:10:d:10.1038_s41558-020-0905-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.