IDEAS home Printed from https://ideas.repec.org/a/nas/journl/v115y2018p7468-7472.html
   My bibliography  Save this article

Local structure can identify and quantify influential global spreaders in large scale social networks

Author

Listed:
  • Yanqing Hu

    (School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China)

  • Shenggong Ji

    (School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China)

  • Yuliang Jin

    (Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China)

  • Ling Feng

    (Computing Science, Institute of High Performance Computing, Agency for Science, Technology, and Research, Singapore 138632; Department of Physics, National University of Singapore, Singapore 117551)

  • H. Eugene Stanley

    (Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215)

  • Shlomo Havlin

    (Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel)

Abstract

Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on a social network is a global process, it is commonly believed that measuring the influence of nodes inevitably requires the knowledge of the entire network. Using percolation theory, we show that the spreading process displays a nucleation behavior: Once a piece of information spreads from the seeds to more than a small characteristic number of nodes, it reaches a point of no return and will quickly reach the percolation cluster, regardless of the entire network structure; otherwise the spreading will be contained locally. Thus, we find that, without the knowledge of the entire network, any node’s global influence can be accurately measured using this characteristic number, which is independent of the network size. This motivates an efficient algorithm with constant time complexity on the long-standing problem of best seed spreaders selection, with performance remarkably close to the true optimum.

Suggested Citation

  • Yanqing Hu & Shenggong Ji & Yuliang Jin & Ling Feng & H. Eugene Stanley & Shlomo Havlin, 2018. "Local structure can identify and quantify influential global spreaders in large scale social networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(29), pages 7468-7472, July.
  • Handle: RePEc:nas:journl:v:115:y:2018:p:7468-7472
    as

    Download full text from publisher

    File URL: http://www.pnas.org/content/115/29/7468.full
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    2. Sun, Hong-liang & Chen, Duan-bing & He, Jia-lin & Ch’ng, Eugene, 2019. "A voting approach to uncover multiple influential spreaders on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 303-312.
    3. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    4. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Liu, Xiang-Chun & Zhu, Xu-Zhen & Tian, Hui & Zhang, Zeng-Ping & Wang, Wei, 2019. "Identifying localized influential spreaders of information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 92-97.
    6. Sun, Jiachen & Feng, Ling & Du, Mingwei & Ma, Xiao & Fan, Zhengping & Gloor, Peter & Hu, Yanqing, 2021. "Ultra-efficient information detection on large-scale online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Qu, Junyi & Tang, Ming & Liu, Ying & Guan, Shuguang, 2020. "Identifying influential spreaders in reversible process," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Fanhui Meng & Haoming Sun & Jiarong Xie & Chengjun Wang & Jiajing Wu & Yanqing Hu, 2021. "Preference for Number of Friends in Online Social Networks," Future Internet, MDPI, vol. 13(9), pages 1-13, September.
    9. Wang, Shuangyan & Cheng, Wuyi, 2019. "Novel method for spreading information with fewer resources in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 15-29.
    10. de Abreu, Carolina & Gonçalves, Sebastián & da Cunha, Bruno Requião, 2021. "Empirical determination of the optimal attack for fragmentation of modular networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:115:y:2018:p:7468-7472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eric Cain (email available below). General contact details of provider: http://www.pnas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.