IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i4d10.1007_s10614-023-10373-8.html
   My bibliography  Save this article

LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios

Author

Listed:
  • Andrés García-Medina

    (Centro de Investigación en Matemáticas
    Consejo Nacional de Ciencia y Tecnología)

  • Ester Aguayo-Moreno

    (Centro de Investigación en Matemáticas)

Abstract

In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM–GARCH versions under the Diebold–Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.

Suggested Citation

  • Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10373-8
    DOI: 10.1007/s10614-023-10373-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10373-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10373-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10373-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.