IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i1d10.1007_s10614-022-10279-x.html
   My bibliography  Save this article

A Deep Learning Based Numerical PDE Method for Option Pricing

Author

Listed:
  • Xiang Wang

    (Nanchang University)

  • Jessica Li

    (Brown University)

  • Jichun Li

    (University of Nevada)

Abstract

Proper pricing of options in the financial derivative market is crucial. For many options, it is often impossible to obtain analytical solutions to the Black–Scholes (BS) equation. Hence an accurate and fast numerical method is very beneficial for option pricing. In this paper, we use the Physics-Informed Neural Networks (PINNs) method recently developed by Raissi et al. (J Comput Phys 378:686–707, 2019) to solve the BS equation. Many experiments have been carried out for solving various option pricing models. Compared with traditional numerical methods, the PINNs based method is simple in implementation, but with comparable accuracy and computational speed, which illustrates a promising potential of deep neural networks for solving more complicated BS equations.

Suggested Citation

  • Xiang Wang & Jessica Li & Jichun Li, 2023. "A Deep Learning Based Numerical PDE Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 149-164, June.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10279-x
    DOI: 10.1007/s10614-022-10279-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10279-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10279-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Antoon Pelsser, "undated". "Pricing Double Barrier Options: An Analytical Approach," Computing in Economics and Finance 1997 130, Society for Computational Economics.
    3. Higham,Desmond J., 2004. "An Introduction to Financial Option Valuation," Cambridge Books, Cambridge University Press, number 9780521547574.
    4. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    5. Reza Mollapourasl & Ali Fereshtian & Michèle Vanmaele, 2019. "Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 259-287, January.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Rock Stephane Koffi & Antoine Tambue, 2020. "A Fitted Multi-point Flux Approximation Method for Pricing Two Options," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 597-628, February.
    8. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    2. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    3. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    4. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    5. Shota Imaki & Kentaro Imajo & Katsuya Ito & Kentaro Minami & Kei Nakagawa, 2021. "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging," Papers 2103.01775, arXiv.org.
    6. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    7. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    8. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    9. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    10. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
    11. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    12. Masanori Hirano & Kentaro Imajo & Kentaro Minami & Takuya Shimada, 2023. "Efficient Learning of Nested Deep Hedging using Multiple Options," Papers 2305.12264, arXiv.org.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    15. Sbuelz, A., 2000. "Hedging Double Barriers with Singles," Discussion Paper 2000-112, Tilburg University, Center for Economic Research.
    16. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    17. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    18. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    19. repec:wyi:journl:002108 is not listed on IDEAS
    20. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    21. Kyoung-Sook Moon & Yunju Jeong & Hongjoong Kim, 2016. "An Efficient Binomial Method for Pricing Asian Options," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 151-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10279-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.