IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v063i13.html
   My bibliography  Save this article

spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models

Author

Listed:
  • Finley, Andrew O.
  • Banerjee, Sudipto
  • Gelfand, Alan E.

Abstract

In this paper we detail the reformulation and rewrite of core functions in the spBayes R package. These efforts have focused on improving computational efficiency, flexibility, and usability for point-referenced data models. Attention is given to algorithm and computing developments that result in improved sampler convergence rate and efficiency by reducing parameter space; decreased sampler run-time by avoiding expensive matrix computations, and; increased scalability to large datasets by implementing a class of predictive process models that attempt to overcome computational hurdles by representing spatial processes in terms of lower-dimensional realizations. Beyond these general computational improvements for existing model functions, we detail new functions for modeling data indexed in both space and time. These new functions implement a class of dynamic spatio-temporal models for settings where space is viewed as continuous and time is taken as discrete.

Suggested Citation

  • Finley, Andrew O. & Banerjee, Sudipto & Gelfand, Alan E., 2015. "spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i13).
  • Handle: RePEc:jss:jstsof:v:063:i13
    DOI: http://hdl.handle.net/10.18637/jss.v063.i13
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v063i13/v63i13.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i13/spBayes_0.3-9.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i13/v63i13.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v063.i13?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    2. Andrew Finley & Sudipto Banerjee & Alan Gelfand, 2012. "Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes," Journal of Geographical Systems, Springer, vol. 14(1), pages 29-47, January.
    3. Smith, Brian J. & Yan, Jun & Cowles, Mary Kathryn, 2008. "Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i10).
    4. Finley, Andrew O. & Banerjee, Sudipto & Carlin, Bradley P., 2007. "spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    3. Jiafang Song & Joshua L. Warren, 2022. "A Directionally Varying Change Points Model for Quantifying the Impact of a Point Source," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 46-62, March.
    4. Junbo Zhang & Daoji Li & Yingzhi Xia & Qifeng Liao, 2022. "Bayesian Aerosol Retrieval-Based PM 2.5 Estimation through Hierarchical Gaussian Process Models," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
    5. Katerina Spanoudaki & Panayiotis Dimitriadis & Emmanouil A. Varouchakis & Gerald A. Corzo Perez, 2022. "Estimation of Hydropower Potential Using Bayesian and Stochastic Approaches for Streamflow Simulation and Accounting for the Intermediate Storage Retention," Energies, MDPI, vol. 15(4), pages 1-20, February.
    6. Xavier Barber & David Conesa & Antonio López-Quílez & Javier Morales, 2019. "Multivariate Bioclimatic Indices Modelling: A Coregionalised Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 225-244, June.
    7. Jingjing Yang & Dennis D. Cox & Jong Soo Lee & Peng Ren & Taeryon Choi, 2017. "Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian–Wishart processes," Biometrics, The International Biometric Society, vol. 73(4), pages 1082-1091, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    2. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    3. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    4. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    5. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
    6. Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
    7. Ting Fung Ma & Fangfang Wang & Jun Zhu & Anthony R. Ives & Katarzyna E. Lewińska, 2023. "Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 279-298, June.
    8. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    9. John O'Sullivan & Conor Sweeney & Andrew C. Parnell, 2020. "Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
    11. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    12. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    13. Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    14. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    15. Yasumasa Matsuda, 2014. "Wavelet Analysis Of Spatio-Temporal Data," TERG Discussion Papers 311, Graduate School of Economics and Management, Tohoku University.
    16. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    17. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    18. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    19. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    20. Andrew Hoegh & Marco A. R. Ferreira & Scotland Leman, 2016. "Spatiotemporal model fusion: multiscale modelling of civil unrest," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 529-545, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:063:i13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.