Advanced Search
MyIDEAS: Login

Modelling Learning and R&D in Innovative Environments: a Cognitive Multi-Agent Approach

Contents:

Author Info

Abstract

Evolutionary arguments are an appropriate approach to the analysis of industry dynamics in a knowledge-based economy, because they can deal properly with innovation processes, technological change, path-dependence and knowledge. But in order to formalise all of this verbal accounting, researchers need methodological tools which support their theoretical analysis. In this paper we suggest some of the main requirements for computer simulation to have the same standing as the traditional tools used by neoclassical economists. Among others, aggregated behaviour should “emerge†from micro-foundations, economic agents should exhibit bounded rational behaviour, learning must be endogenous and human learning should be in agreement with some stylised facts from cognitive science and psychology. We argue that multi-agent systems is a methodology which fulfills some of the requirements above. We also propose an alternative way for modelling cognitive learning in evolutionary environments, which is in agreement with some basic concepts from cognitive science. Agents are endowed with both declarative and procedural knowledge. We have used our approach to build evolutionary models of innovative industries, where firms learn how to change their decisions about R&D budget, production, technology, etc. We refer as well to some applications using the same framework to model behavioural financial markets, economic geography and water resource management.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://jasss.soc.surrey.ac.uk/7/2/7.html
Download Restriction: no

Bibliographic Info

Article provided by Journal of Artificial Societies and Social Simulation in its journal Journal of Artificial Societies and Social Simulation.

Volume (Year): 7 (2004)
Issue (Month): 2 ()
Pages: 7

as in new window
Handle: RePEc:jas:jasssj:2004-11-1

Contact details of provider:

Related research

Keywords: Evolutionary economics; agent-based; muti-agent systems; innovation; research and development; industry evolution; knowledge-based economy;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2004-11-1. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nigel Gilbert).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.