IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i2p458-473.html
   My bibliography  Save this article

Supply Chain Management with Online Customer Selection

Author

Listed:
  • Adam N. Elmachtoub

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

  • Retsef Levi

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

We consider new online variants of supply chain management models, where in addition to production decisions, one also has to actively decide on which customers to serve. Specifically, customers arrive sequentially during a selection phase, and one has to decide whether to accept or reject each customer upon arrival. If a customer is rejected, then a lost-sales cost is incurred. Once the selection decisions are all made, one has to satisfy all the accepted customers with minimum possible production cost. The goal is to minimize the total cost of lost sales and production. A key feature of the model is that customers arrive in an online manner, and the decision maker does not require any information about future arrivals.We provide two novel algorithms for online customer selection problems, which are based on repeatedly solving offline subproblems that ignore previously made decisions. For many important settings, our algorithms achieve small constant competitive ratio guarantees. That is, for any sequence of arriving customers, the cost incurred by the online algorithm is within a fixed constant factor of the cost incurred by the respective optimal solution that has full knowledge upfront on the sequence of arriving customers. Finally, we provide a computational study on the performance of these algorithms when applied to the economic lot sizing and joint replenishment problems with online customer selection.

Suggested Citation

  • Adam N. Elmachtoub & Retsef Levi, 2016. "Supply Chain Management with Online Customer Selection," Operations Research, INFORMS, vol. 64(2), pages 458-473, April.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:2:p:458-473
    DOI: 10.1287/opre.2015.1472
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1472
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wilco Van den Heuvel & Albert P. M. Wagelmans, 2010. "Worst-Case Analysis for a General Class of Online Lot-Sizing Heuristics," Operations Research, INFORMS, vol. 58(1), pages 59-67, February.
    2. Scott Carr & Izak Duenyas, 2000. "Optimal Admission Control and Sequencing in a Make-to-Stock/Make-to-Order Production System," Operations Research, INFORMS, vol. 48(5), pages 709-720, October.
    3. Awi Federgruen & Yu-Sheng Zheng, 1992. "The Joint Replenishment Problem with General Joint Cost Structures," Operations Research, INFORMS, vol. 40(2), pages 384-403, April.
    4. Adam N. Elmachtoub & Retsef Levi, 2015. "From Cost Sharing Mechanisms to Online Selection Problems," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 542-557, March.
    5. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    6. Retsef Levi & Robin Roundy & David Shmoys & Maxim Sviridenko, 2008. "A Constant Approximation Algorithm for the One-Warehouse Multiretailer Problem," Management Science, INFORMS, vol. 54(4), pages 763-776, April.
    7. René Caldentey & Lawrence M. Wein, 2006. "Revenue Management of a Make-to-Stock Queue," Operations Research, INFORMS, vol. 54(5), pages 859-875, October.
    8. Niv Buchbinder & Tracy Kimbrel & Retsef Levi & Konstantin Makarychev & Maxim Sviridenko, 2013. "Online Make-to-Order Joint Replenishment Model: Primal-Dual Competitive Algorithms," Operations Research, INFORMS, vol. 61(4), pages 1014-1029, August.
    9. van den Heuvel, W. & Kundakcioglu, O.E. & Geunes, J. & Romeijn, H.E. & Sharkey, T.C. & Wagelmans, A.P.M., 2007. "Integrated market selection and production planning: complexity and solution approaches," Econometric Institute Research Papers EI 2007-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    11. Joseph Geunes & H. Edwin Romeijn & Kevin Taaffe, 2006. "Requirements Planning with Pricing and Order Selection Flexibility," Operations Research, INFORMS, vol. 54(2), pages 394-401, April.
    12. Sreekumar Bhaskaran & Karthik Ramachandran & John Semple, 2010. "A Dynamic Inventory Model with the Right of Refusal," Management Science, INFORMS, vol. 56(12), pages 2265-2281, December.
    13. Guang Xu & Jinhui Xu, 2009. "An improved approximation algorithm for uncapacitated facility location problem with penalties," Journal of Combinatorial Optimization, Springer, vol. 17(4), pages 424-436, May.
    14. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    15. Yanyi Xu & Arnab Bisi & Maqbool Dada, 2011. "A Periodic-Review Base-Stock Inventory System with Sales Rejection," Operations Research, INFORMS, vol. 59(3), pages 742-753, June.
    16. Michael R. Wagner, 2010. "Fully Distribution-Free Profit Maximization: The Inventory Management Case," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 728-741, November.
    17. Pinar Keskinocak & R. Ravi & Sridhar Tayur, 2001. "Scheduling and Reliable Lead-Time Quotation for Orders with Availability Intervals and Lead-Time Sensitive Revenues," Management Science, INFORMS, vol. 47(2), pages 264-279, February.
    18. GOEMANS, Michel X. & SKUTELLA, Martin, 2000. "Cooperative facility location games," LIDAM Discussion Papers CORE 2000014, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Michael O. Ball & Maurice Queyranne, 2009. "Toward Robust Revenue Management: Competitive Analysis of Online Booking," Operations Research, INFORMS, vol. 57(4), pages 950-963, August.
    20. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2006. "Primal-Dual Algorithms for Deterministic Inventory Problems," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 267-284, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belleh Fontem & Megan Price, 2021. "Joint client selection and contract design for a risk-averse commodity broker in a two-echelon supply chain," Annals of Operations Research, Springer, vol. 307(1), pages 111-138, December.
    2. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    3. Donghui Yang & Yan Wang & Shue Mei, 2021. "How to balance online healthcare platforms and offline systems? A supply chain management perspective," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(2), pages 502-515, March.
    4. Xinshang Wang & Van-Anh Truong, 2018. "Multi-Priority Online Scheduling with Cancellations," Operations Research, INFORMS, vol. 66(1), pages 104-122, January.
    5. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    6. Nikolay Osadchiy & William Schmidt & Jing Wu, 2021. "The Bullwhip Effect in Supply Networks," Management Science, INFORMS, vol. 67(10), pages 6153-6173, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam N. Elmachtoub & Retsef Levi, 2015. "From Cost Sharing Mechanisms to Online Selection Problems," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 542-557, March.
    2. Niv Buchbinder & Tracy Kimbrel & Retsef Levi & Konstantin Makarychev & Maxim Sviridenko, 2013. "Online Make-to-Order Joint Replenishment Model: Primal-Dual Competitive Algorithms," Operations Research, INFORMS, vol. 61(4), pages 1014-1029, August.
    3. Xinshang Wang & Van-Anh Truong, 2018. "Multi-Priority Online Scheduling with Cancellations," Operations Research, INFORMS, vol. 66(1), pages 104-122, January.
    4. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    5. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 0. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    6. Marcin Bienkowski & Martin Böhm & Jaroslaw Byrka & Marek Chrobak & Christoph Dürr & Lukáš Folwarczný & Łukasz Jeż & Jiří Sgall & Nguyen Kim Thang & Pavel Veselý, 2020. "Online Algorithms for Multilevel Aggregation," Operations Research, INFORMS, vol. 68(1), pages 214-232, January.
    7. Guanqun Ni, 2023. "An improved online replenishment policy and its competitive ratio analysis for a purchase-to-order seller," Journal of Combinatorial Optimization, Springer, vol. 46(2), pages 1-14, September.
    8. Jean-Philippe Gayon & Guillaume Massonnet & Christophe Rapine & Gautier Stauffer, 2017. "Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 854-875, August.
    9. Wenqiang Dai & Meng Zheng & Xu Chen & Zhuolin Yang, 2022. "Online economic ordering problem for deteriorating items with limited price information," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2246-2268, November.
    10. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    11. Danny Segev, 2014. "An Approximate Dynamic-Programming Approach to the Joint Replenishment Problem," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 432-444, May.
    12. Péter Györgyi & Tamás Kis & Tímea Tamási & József Békési, 2023. "Joint replenishment meets scheduling," Journal of Scheduling, Springer, vol. 26(1), pages 77-94, February.
    13. Gayon, J.-P. & Massonnet, G. & Rapine, C. & Stauffer, G., 2016. "Constant approximation algorithms for the one warehouse multiple retailers problem with backlog or lost-sales," European Journal of Operational Research, Elsevier, vol. 250(1), pages 155-163.
    14. Yanyi Xu & Doğan A. Serel & Arnab Bisi & Maqbool Dada, 2022. "Coping with Demand Uncertainty: The Interplay between Dual Sourcing and Endogenous Partial Backordering," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1560-1575, April.
    15. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    16. van den Heuvel, Wilco & Wagelmans, Albert P.M., 2017. "A note on “A multi-period profit maximizing model for retail supply chain management”," European Journal of Operational Research, Elsevier, vol. 260(2), pages 625-630.
    17. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    18. Zhi-Long Chen & Nicholas G. Hall, 2010. "The Coordination of Pricing and Scheduling Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 77-92, April.
    19. Altendorfer, Klaus & Minner, Stefan, 2015. "Influence of order acceptance policies on optimal capacity investment with stochastic customer required lead times," European Journal of Operational Research, Elsevier, vol. 243(2), pages 555-565.
    20. Suresh P. Sethi & Sushil Gupta & Vipin K. Agrawal & Vijay K. Agrawal, 2022. "Nobel laureates’ contributions to and impacts on operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4283-4303, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:2:p:458-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.