IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v24y2022i1p580-599.html
   My bibliography  Save this article

Adaptive Learning of Drug Quality and Optimization of Patient Recruitment for Clinical Trials with Dropouts

Author

Listed:
  • Zhili Tian

    (Department of Management and Decision Sciences, Wall College of Business Administration, Coastal Carolina University, Conway, South Carolina 29528)

  • Weidong Han

    (Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544)

  • Warren B. Powell

    (Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544)

Abstract

Problem definition : Clinical trials are crucial to new drug development. This study investigates optimal patient enrollment in clinical trials with interim analyses, which are analyses of treatment responses from patients at intermediate points. Our model considers uncertainties in patient enrollment and drug treatment effectiveness. We consider the benefits of completing a trial early and the cost of accelerating a trial by maximizing the net present value of drug cumulative profit. Academic/practical relevance : Clinical trials frequently account for the largest cost in drug development, and patient enrollment is an important problem in trial management. Our study develops a dynamic program, accurately capturing the dynamics of the problem, to optimize patient enrollment while learning the treatment effectiveness of an investigated drug. Methodology : The model explicitly captures both the physical state (enrolled patients) and belief states about the effectiveness of the investigated drug and a standard treatment drug. Using Bayesian updates and dynamic programming, we establish monotonicity of the value function in state variables and characterize an optimal enrollment policy. We also introduce, for the first time, the use of backward approximate dynamic programming (ADP) for this problem class. We illustrate the findings using a clinical trial program from a leading firm. Our study performs sensitivity analyses of the input parameters on the optimal enrollment policy. Results : The value function is monotonic in cumulative patient enrollment and the average responses of treatment for the investigated drug and standard treatment drug. The optimal enrollment policy is nondecreasing in the average response from patients using the investigated drug and is nonincreasing in cumulative patient enrollment in periods between two successive interim analyses. The forward ADP algorithm (or backward ADP algorithm) exploiting the monotonicity of the value function reduced the run time from 1.5 months using the exact method to a day (or 20 minutes) within 4% of the exact method. Through an application to a leading firm’s clinical trial program, the study demonstrates that the firm can have a sizable gain of drug profit following the optimal policy that our model provides. Managerial implications : We developed a new model for improving the management of clinical trials. Our study provides insights of an optimal policy and insights into the sensitivity of value function to the dropout rate and prior probability distribution. A firm can have a sizable gain in the drug’s profit by managing its trials using the optimal policies and the properties of value function. We illustrated that firms can use the ADP algorithms to develop their patient enrollment strategies.

Suggested Citation

  • Zhili Tian & Weidong Han & Warren B. Powell, 2022. "Adaptive Learning of Drug Quality and Optimization of Patient Recruitment for Clinical Trials with Dropouts," Manufacturing & Service Operations Management, INFORMS, vol. 24(1), pages 580-599, January.
  • Handle: RePEc:inm:ormsom:v:24:y:2022:i:1:p:580-599
    DOI: 10.1287/msom.2020.0936
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2020.0936
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2020.0936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:24:y:2022:i:1:p:580-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.