IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v23y2021i5p1175-1195.html
   My bibliography  Save this article

When Variability Trumps Volatility: Optimal Control and Value of Reverse Logistics in Supply Chains with Multiple Flows of Product

Author

Listed:
  • Alexandar Angelus

    (Mays School of Business, Texas A&M University, College Station, Texas 77845)

  • Özalp Özer

    (Jindal School of Management, The University of Texas at Dallas, Richardson, Texas 75080)

Abstract

Problem definition : We study how to optimally control a multistage supply chain in which each location can initiate multiple flows of product, including the reverse flow of orders. We also quantify the resulting value generated by reverse logistics and identify the drivers of that value. Academic/practical relevance : Reverse logistics has been gaining recognition in practice and theory for helping companies better match supply with demand, and thus reduce costs in their supply chains. Nevertheless, there remains a lack of clarity in practice and the research literature regarding precisely what in reverse logistics is so important, exactly how reverse logistics creates value, and what the drivers of that value are. Methodology : We first formulate a multistage inventory model to jointly optimize ordering decisions pertaining to regular, reverse, and expedited flows of product in a logistics supply chain , where the physical transformation of the product is completed at the most upstream location. With multiple product flows, the feasible region for the problem acquires multidimensional boundaries that lead to the curse of dimensionality. Next, we extend our analysis to product-transforming supply chains , in which product transformation is allowed to occur at each location. In such a system, it becomes necessary to keep track of both the location and stage of completion of each unit of inventory; thus, the number of state and decision variables increases with the square of the number of locations. Results : To solve the reverse logistics problem in logistics supply chains, we develop a different solution method that allows us to reduce the dimensionality of the feasible region and identify the structure of the optimal policy. We refer to this policy as a nested echelon base stock policy , as decisions for different product flows are sequentially nested within each other. We show that this policy renders the model analytically and numerically tractable. Our results provide actionable policies for firms to jointly manage the three different product flows in their supply chains and allow us to arrive at insights regarding the main drivers of the value of reverse logistics. One of our key findings is that, when it comes to the value generated by reverse logistics, demand variability (i.e., demand uncertainty across periods) matters more than demand volatility (i.e., demand uncertainty within each period). To analyze product-transforming supply chains, we first identify a policy that provides a lower bound on the total cost. Then, we establish a special decomposition of the objective cost function that allows us to propose a novel heuristic policy. We find that the performance gap of our heuristic policy relative to the lower-bounding policy averages less than 5% across a range of parameters and supply chain lengths. Managerial implications : Researchers can build on our methodology to study more complex reverse logistics settings, as well as tackle other inventory problems with multidimensional boundaries of the feasible region. Our insights can help companies involved in reverse logistics to better manage their orders for products, and better understand the value created by this capability and when (not) to invest in reverse logistics.

Suggested Citation

  • Alexandar Angelus & Özalp Özer, 2021. "When Variability Trumps Volatility: Optimal Control and Value of Reverse Logistics in Supply Chains with Multiple Flows of Product," Manufacturing & Service Operations Management, INFORMS, vol. 23(5), pages 1175-1195, September.
  • Handle: RePEc:inm:ormsom:v:23:y:2021:i:5:p:1175-1195
    DOI: 10.1287/msom.2020.0874
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2020.0874
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2020.0874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:23:y:2021:i:5:p:1175-1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.