IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v22y2020i2p330-345.html
   My bibliography  Save this article

Managing Trade-offs in Protein Manufacturing: How Much to Waste?

Author

Listed:
  • Tugce Martagan

    (School of Industrial Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands)

  • Ananth Krishnamurthy

    (Department of Industrial Engineering, University of Wisconsin, Madison, Wisconsin 53706)

  • Peter A. Leland

    (Aldevron, Madison, Wisconsin 53719)

Abstract

We consider the challenges and trade-offs involved in the manufacturing of engineered proteins. Manufacturing these proteins involves high risk of financial losses due to the purity and yield trade-offs, uncertainty in the process outcomes, and high operating costs. In this setting, the biomanufacturer must determine how much protein to manufacture in the upstream fermentation operations, and then how much of it to waste in each subsequent purification operation because of the purity–yield trade-offs. We develop a Markov decision model to optimize three layers of interdependent decisions in protein manufacturing: the optimal amount of protein to be produced in upstream operations, the optimal choice of chromatography technique to be used in downstream operations, and the optimal choice of pooling windows during chromatography. The proposed stochastic model dynamically optimizes these three layers of interdependent decisions to maximize the expected profit. The structural analysis derives functional relationships between the purity–yield trade-offs and operating costs, and characterizes the optimal operating policies. The optimal policy also suggests when the biomanufacturer is better off failing early and cutting losses. We use a state aggregation scheme to reduce the computational efforts, and quantify the savings obtained from the use of the optimization model in industry practice at Aldevron.

Suggested Citation

  • Tugce Martagan & Ananth Krishnamurthy & Peter A. Leland, 2020. "Managing Trade-offs in Protein Manufacturing: How Much to Waste?," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 330-345, March.
  • Handle: RePEc:inm:ormsom:v:22:y:2020:i:2:p:330-345
    DOI: 10.1287/msom.2018.0740
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/msom.2018.0740
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2018.0740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tugce Martagan & Ananth Krishnamurthy & Peter A. Leland & Christos T. Maravelias, 2018. "Performance Guarantees and Optimal Purification Decisions for Engineered Proteins," Operations Research, INFORMS, vol. 66(1), pages 18-41, 1-2.
    2. Tugce Martagan & Ananth Krishnamurthy & Christos T. Maravelias, 2016. "Optimal condition-based harvesting policies for biomanufacturing operations with failure risks," IISE Transactions, Taylor & Francis Journals, vol. 48(5), pages 440-461, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Zheng & Wei Xie & Ilya O. Ryzhov & Dongming Xie, 2023. "Policy Optimization in Dynamic Bayesian Network Hybrid Models of Biomanufacturing Processes," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 66-82, January.
    2. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    3. Tugce Martagan & Ananth Krishnamurthy & Peter A. Leland & Christos T. Maravelias, 2018. "Performance Guarantees and Optimal Purification Decisions for Engineered Proteins," Operations Research, INFORMS, vol. 66(1), pages 18-41, 1-2.
    4. Tugce Martagan & Ivo Adan & Marc Baaijens & Coen Dirckx & Oscar Repping & Bram van Ravenstein & PK Yegneswaran, 2023. "Merck Animal Health Uses Operations Research Methods to Transform Biomanufacturing Productivity for Lifesaving Medicines," Interfaces, INFORMS, vol. 53(1), pages 85-95, January.
    5. Mabel C. Chou & Mahmut Parlar & Yun Zhou, 2017. "Optimal Timing to Initiate Medical Treatment for a Disease Evolving as a Semi-Markov Process," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 194-217, October.
    6. Tugce Martagan & Yasemin Limon & Ananth Krishnamurthy & Tom Foti & Peter Leland, 2019. "Aldevron Accelerates Growth Using Operations Research in Biomanufacturing," Interfaces, INFORMS, vol. 49(2), pages 137-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:22:y:2020:i:2:p:330-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.