IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v45y2020i2p713-731.html
   My bibliography  Save this article

Hamiltonian Cycles and Subsets of Discounted Occupational Measures

Author

Listed:
  • Ali Eshragh

    (School of Mathematical and Physical Sciences, University of Newcastle, 2308 Newcastle, New South Wales, Australia)

  • Jerzy A. Filar

    (School of Mathematics and Physics, University of Queensland, 4072 Brisbane, Queensland, Australia)

  • Thomas Kalinowski

    (School of Science and Technology, University of New England, 2351 Armidale, New South Wales, Australia)

  • Sogol Mohammadian

    (School of Mathematical and Physical Sciences, University of Newcastle, 2308 Newcastle, New South Wales, Australia)

Abstract

We study a certain polytope arising from embedding the Hamiltonian cycle problem in a discounted Markov decision process. The Hamiltonian cycle problem can be reduced to finding particular extreme points of a certain polytope associated with the input graph. This polytope is a subset of the space of discounted occupational measures. We characterize the feasible bases of the polytope for a general input graph G and determine the expected numbers of different types of feasible bases when the underlying graph is random. We utilize these results to demonstrate that augmenting certain additional constraints to reduce the polyhedral domain can eliminate a large number of feasible bases that do not correspond to Hamiltonian cycles. Finally, we develop a random walk algorithm on the feasible bases of the reduced polytope and present some numerical results. We conclude with a conjecture on the feasible bases of the reduced polytope.

Suggested Citation

  • Ali Eshragh & Jerzy A. Filar & Thomas Kalinowski & Sogol Mohammadian, 2020. "Hamiltonian Cycles and Subsets of Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 713-731, May.
  • Handle: RePEc:inm:ormoor:v:45:y:2020:i:2:p:713-731
    DOI: 10.1287/moor.2019.1009
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2019.1009
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2019.1009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konstantin Avrachenkov & Ali Eshragh & Jerzy A. Filar, 2016. "On transition matrices of Markov chains corresponding to Hamiltonian cycles," Annals of Operations Research, Springer, vol. 243(1), pages 19-35, August.
    2. Ali Eshragh & Jerzy Filar, 2011. "Hamiltonian Cycles, Random Walks, and Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 258-270, May.
    3. Eugene A. Feinberg, 2000. "Constrained Discounted Markov Decision Processes and Hamiltonian Cycles," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 130-140, February.
    4. Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
    5. Jerzy A. Filar & Dmitry Krass, 1994. "Hamiltonian Cycles and Markov Chains," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 223-237, February.
    6. Vladimir Ejov & Jerzy A. Filar & Michael Haythorpe & Giang T. Nguyen, 2009. "Refined MDP-Based Branch-and-Fix Algorithm for the Hamiltonian Cycle Problem," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 758-768, August.
    7. Nelly Litvak & Vladimir Ejov, 2009. "Markov Chains and Optimality of the Hamiltonian Cycle," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 71-82, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Eshragh & Jerzy Filar, 2011. "Hamiltonian Cycles, Random Walks, and Discounted Occupational Measures," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 258-270, May.
    2. Jerzy A. Filar & Asghar Moeini, 2022. "Hamiltonian cycle curves in the space of discounted occupational measures," Annals of Operations Research, Springer, vol. 317(2), pages 605-622, October.
    3. Vivek Borkar & Jerzy Filar, 2013. "Markov chains, Hamiltonian cycles and volumes of convex bodies," Journal of Global Optimization, Springer, vol. 55(3), pages 633-639, March.
    4. Konstantin Avrachenkov & Ali Eshragh & Jerzy A. Filar, 2016. "On transition matrices of Markov chains corresponding to Hamiltonian cycles," Annals of Operations Research, Springer, vol. 243(1), pages 19-35, August.
    5. Eugene A. Feinberg & Uriel G. Rothblum, 2012. "Splitting Randomized Stationary Policies in Total-Reward Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 129-153, February.
    6. Vladimir Ejov & Jerzy A. Filar & Michael Haythorpe & Giang T. Nguyen, 2009. "Refined MDP-Based Branch-and-Fix Algorithm for the Hamiltonian Cycle Problem," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 758-768, August.
    7. Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
    8. Vladimir Ejov & Jerzy A. Filar & Minh-Tuan Nguyen, 2004. "Hamiltonian Cycles and Singularly Perturbed Markov Chains," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 114-131, February.
    9. Nelly Litvak & Vladimir Ejov, 2009. "Markov Chains and Optimality of the Hamiltonian Cycle," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 71-82, February.
    10. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    11. Lanlan Zhang & Xianping Guo, 2008. "Constrained continuous-time Markov decision processes with average criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 323-340, April.
    12. Michael Haythorpe & Walter Murray, 2022. "Finding a Hamiltonian cycle by finding the global minimizer of a linearly constrained problem," Computational Optimization and Applications, Springer, vol. 81(1), pages 309-336, January.
    13. Guo, Xianping & Zhang, Wenzhao, 2014. "Convergence of controlled models and finite-state approximation for discounted continuous-time Markov decision processes with constraints," European Journal of Operational Research, Elsevier, vol. 238(2), pages 486-496.
    14. Ohlmann, Jeffrey W. & Bean, James C., 2009. "Resource-constrained management of heterogeneous assets with stochastic deterioration," European Journal of Operational Research, Elsevier, vol. 199(1), pages 198-208, November.
    15. Eugene A. Feinberg, 2000. "Constrained Discounted Markov Decision Processes and Hamiltonian Cycles," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 130-140, February.
    16. Dmitry Krass & O. J. Vrieze, 2002. "Achieving Target State-Action Frequencies in Multichain Average-Reward Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 545-566, August.
    17. G. Dorini & F. Pierro & D. Savic & A. Piunovskiy, 2007. "Neighbourhood Search for constructing Pareto sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 315-337, April.
    18. J. Filar & M. Haythorpe & W. Murray, 2013. "On the determinant and its derivatives of the rank-one corrected generator of a Markov chain on a graph," Journal of Global Optimization, Springer, vol. 56(4), pages 1425-1440, August.
    19. Richard Chen & Eugene Feinberg, 2010. "Compactness of the space of non-randomized policies in countable-state sequential decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 307-323, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:45:y:2020:i:2:p:713-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.