IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i2p1006-1023.html
   My bibliography  Save this article

Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming

Author

Listed:
  • Stefano Coniglio

    (Department of Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom)

  • Stefano Gualandi

    (Department of Mathematics, University of Pavia, Pavia 27100, Italy)

Abstract

In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities. In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically. In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k -rank inequalities, whose closure is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that the problem is Σ 2 P -hard and provide some insights on its polyhedral structure. We then propose two exact methods for its solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the stable set problem, including odd-cycle inequalities and wheel inequalities. Summary of Contribution: This paper proposes two original methods for solving a challenging cut-separation problem (of bilevel type) for a large class of inequalities valid for one of the key operations research problems, namely, the max stable set problem. An extensive set of experimental results validates the proposed methods. All the source code and data sets are available online on GitHub.

Suggested Citation

  • Stefano Coniglio & Stefano Gualandi, 2022. "Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side for the Maximum Stable Set Problem via Bilevel Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1006-1023, March.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1006-1023
    DOI: 10.1287/ijoc.2021.1115
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1115
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evgeny Maslov & Mikhail Batsyn & Panos Pardalos, 2014. "Speeding up branch and bound algorithms for solving the maximum clique problem," Journal of Global Optimization, Springer, vol. 59(1), pages 1-21, May.
    2. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    3. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    4. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    5. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    6. Butenko, S. & Wilhelm, W.E., 2006. "Clique-detection models in computational biochemistry and genomics," European Journal of Operational Research, Elsevier, vol. 173(1), pages 1-17, August.
    7. Karla L. Hoffman & Manfred Padberg, 1993. "Solving Airline Crew Scheduling Problems by Branch-and-Cut," Management Science, INFORMS, vol. 39(6), pages 657-682, June.
    8. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    9. Steffen Rebennack & Marcus Oswald & Dirk Oliver Theis & Hanna Seitz & Gerhard Reinelt & Panos M. Pardalos, 2011. "A Branch and Cut solver for the maximum stable set problem," Journal of Combinatorial Optimization, Springer, vol. 21(4), pages 434-457, May.
    10. E. C. Sewell, 1998. "A Branch and Bound Algorithm for the Stability Number of a Sparse Graph," INFORMS Journal on Computing, INFORMS, vol. 10(4), pages 438-447, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    2. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    3. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    4. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    5. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    6. Foad Mahdavi Pajouh, 2020. "Minimum cost edge blocker clique problem," Annals of Operations Research, Springer, vol. 294(1), pages 345-376, November.
    7. Svyatoslav Trukhanov & Chitra Balasubramaniam & Balabhaskar Balasundaram & Sergiy Butenko, 2013. "Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations," Computational Optimization and Applications, Springer, vol. 56(1), pages 113-130, September.
    8. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    9. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.
    10. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    11. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    12. Zhou, Yi & Rossi, André & Hao, Jin-Kao, 2018. "Towards effective exact methods for the Maximum Balanced Biclique Problem in bipartite graphs," European Journal of Operational Research, Elsevier, vol. 269(3), pages 834-843.
    13. Yang Wang & Jin-Kao Hao & Fred Glover & Zhipeng Lü & Qinghua Wu, 2016. "Solving the maximum vertex weight clique problem via binary quadratic programming," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 531-549, August.
    14. Ferrarini, Luca & Gualandi, Stefano, 2022. "Total Coloring and Total Matching: Polyhedra and Facets," European Journal of Operational Research, Elsevier, vol. 303(1), pages 129-142.
    15. Assif Assad & Kusum Deep, 2018. "A heuristic based harmony search algorithm for maximum clique problem," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 411-433, June.
    16. Yuan Sun & Andreas Ernst & Xiaodong Li & Jake Weiner, 2021. "Generalization of machine learning for problem reduction: a case study on travelling salesman problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 607-633, September.
    17. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    18. Li, Chu-Min & Liu, Yanli & Jiang, Hua & Manyà, Felip & Li, Yu, 2018. "A new upper bound for the maximum weight clique problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 66-77.
    19. Benjamin McClosky & Illya V. Hicks, 2012. "Combinatorial algorithms for the maximum k-plex problem," Journal of Combinatorial Optimization, Springer, vol. 23(1), pages 29-49, January.
    20. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1006-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.