IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i2p706-720.html
   My bibliography  Save this article

Conflict-Driven Heuristics for Mixed Integer Programming

Author

Listed:
  • Jakob Witzig

    (Zuse Institute Berlin, 14195 Berlin, Germany)

  • Ambros Gleixner

    (Zuse Institute Berlin, 14195 Berlin, Germany)

Abstract

Two essential ingredients of modern mixed-integer programming solvers are diving heuristics, which simulate a partial depth-first search in a branch-and-bound tree, and conflict analysis, which learns valid constraints from infeasible subproblems. So far, these techniques have mostly been studied independently: primal heuristics for finding high-quality feasible solutions early during the solving process and conflict analysis for fathoming nodes of the search tree and improving the dual bound. In this paper, we pose the question of whether and how the orthogonal goals of proving infeasibility and generating improving solutions can be pursued in a combined manner such that a state-of-the-art solver can benefit. To do so, we integrate both concepts in two different ways. First, we develop a diving heuristic that simultaneously targets the generation of valid conflict constraints from the Farkas dual and the generation of improving solutions. We show that, in the primal, this is equivalent to the optimistic strategy of diving toward the best bound with respect to the objective function. Second, we use information derived from conflict analysis to enhance the search of a diving heuristic akin to classic coefficient diving. In a detailed computational study, both methods are evaluated on the basis of an implementation in the source-open-solver SCIP. The experimental results underline the potential of combining both diving heuristics and conflict analysis. Summary of Contribution. This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed-integer linear programs. It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be combined successfully with diving heuristics that aim at finding primal solutions. For two newly designed diving heuristics, this paper features a thoroughly computational study regarding their impact on the overall performance of a state-of-the-art MIP solver.

Suggested Citation

  • Jakob Witzig & Ambros Gleixner, 2021. "Conflict-Driven Heuristics for Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 706-720, May.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:2:p:706-720
    DOI: 10.1287/ijoc.2020.0973
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.0973
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.0973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce Davey & Natashia Boland & Peter J. Stuckey, 2002. "Efficient Intelligent Backtracking Using Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 373-386, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:2:p:706-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.