IDEAS home Printed from https://ideas.repec.org/a/igg/jsda00/v3y2014i4p1-16.html
   My bibliography  Save this article

Analysis & Minimization of the Effect of Delay on Load Balancing for Efficient Web Server Queueing Model

Author

Listed:
  • Harikesh Singh

    (Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, India)

  • Shishir Kumar

    (Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, India)

Abstract

Load balancing applications introduce delays due to load relocation among various web servers and depend upon the design of balancing algorithms and resources required to share in the large and wide applications. The performance of web servers depends upon the efficient sharing of the resources and it can be evaluated by the overall task completion time of the tasks based on the load balancing algorithm. Each load balancing algorithm introduces delay in the task allocation among the web servers, but still improved the performance of web servers dynamically. As a result, the queue-length of web server and average waiting time of tasks decreases with load balancing instants based on zero, deterministic, and random types of delay. In this paper, the effects of delay due to load balancing have been analyzed based on the factors: average queue-length and average waiting time of tasks. In the proposed Ratio Factor Based Delay Model (RFBDM), the above factors are minimized and improved the functioning of the web server system based on the average task completion time of each web server node. Based on the ratio of average task completion time, the average queue-length and average waiting time of the tasks allocated to the web server have been analyzed and simulated with Monte-Carlo simulation. The results of simulation have shown that the effects of delays in terms of average queue-length and average waiting time using proposed model have minimized in comparison to existing delay models of the web servers.

Suggested Citation

  • Harikesh Singh & Shishir Kumar, 2014. "Analysis & Minimization of the Effect of Delay on Load Balancing for Efficient Web Server Queueing Model," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 3(4), pages 1-16, October.
  • Handle: RePEc:igg:jsda00:v:3:y:2014:i:4:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijsda.2014100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsda00:v:3:y:2014:i:4:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.