IDEAS home Printed from https://ideas.repec.org/a/ids/ijmore/v7y2015i3p318-347.html
   My bibliography  Save this article

A batch arrival unreliable Bernoulli vacation model with two phases of service and general retrial times

Author

Listed:
  • Gautam Choudhury
  • Mitali Deka

Abstract

This paper deals with the steady state behaviour of an Mx/G/1 retrial queue with two successive phases of service and general retrial times under Bernoulli vacation schedule for an unreliable server. While the server is working with any phase of service, it may breakdown at any instant and the service channel will fail for a short interval of time. The primary customers finding the server busy, down, or on vacation are queued in the orbit in accordance with first come, first served (FCFS) retrial policy. After the completion of the second phase of service, the server either goes for a vacation of random length with probability p or may serve the next unit, if any, with probability (1 - p). For this model, we first obtain the condition under which the system is stable. Then, we derive the system size distribution at a departure epoch and the probability generating function of the joint distributions of the server state and orbit size, and prove the decomposition property.

Suggested Citation

  • Gautam Choudhury & Mitali Deka, 2015. "A batch arrival unreliable Bernoulli vacation model with two phases of service and general retrial times," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 7(3), pages 318-347.
  • Handle: RePEc:ids:ijmore:v:7:y:2015:i:3:p:318-347
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=69151
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahuja, Anjali & Jain, Anamika & Jain, Madhu, 2022. "Transient analysis and ANFIS computing of unreliable single server queueing model with multiple stage service and functioning vacation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 464-490.
    2. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    3. Amina Angelika Bouchentouf & Mouloud Cherfaoui & Mohamed Boualem, 2019. "Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 300-323, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijmore:v:7:y:2015:i:3:p:318-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=320 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.