IDEAS home Printed from https://ideas.repec.org/a/ids/ijetma/v22y2019i1p40-55.html
   My bibliography  Save this article

Modelling and simulation of batch adsorption of malachite green using groundnut shell waste-based activated carbon

Author

Listed:
  • Irvan Dahlan
  • Kan Chee Kit

Abstract

Modelling and simulation of batch adsorption in malachite green dye removal using activated carbon prepared from groundnut shell waste was studied. Mathematical model was developed based on a two-resistance model which included external mass transfer coefficient and pore diffusion coefficient that controls the mass transfer process in batch adsorption. MATLAB program was written to solve ordinary differential equation from the model and to estimate mass transfer parameters by matching the simulation data with the experimental data from literature. From the results, it was found that the external mass transfer coefficient kf and pore diffusion coefficient Dp were estimated to be 6.2054 × 10−2 m/s and 2.2660 × 10−10 m2/s, respectively. Using the estimated parameters, simulation results showed that the model provided good correlation with the experimental data based on different initial concentrations. The estimated parameters were used to study the adsorption of dye under different variables such as initial dye concentration, volume of dye solution, adsorbent particle size and mass of adsorbent. It was concluded that the dye removal efficiency was higher for lower initial dye concentration, higher mass of adsorbent, lower volume of dye solution and smaller adsorbent particle size.

Suggested Citation

  • Irvan Dahlan & Kan Chee Kit, 2019. "Modelling and simulation of batch adsorption of malachite green using groundnut shell waste-based activated carbon," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 22(1), pages 40-55.
  • Handle: RePEc:ids:ijetma:v:22:y:2019:i:1:p:40-55
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=101385
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetma:v:22:y:2019:i:1:p:40-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=11 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.