IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9991808.html
   My bibliography  Save this article

CFD Numerical Investigation of a New Solar Flat Air-Collector Having Different Obstacles with Various Configurations and Arrangements

Author

Listed:
  • Walid Rouissi
  • Nabiha Naili
  • Mohamed Jarray
  • Majdi Hazami

Abstract

This work deals with a numerical parametric optimization study of a new Solar Flat Air Collector (SFAC) configuration. The CFD numerical parametric study investigates various SFAC structures inside the air cavity without obstacles and with spherical, cubic, cylindrical, and pyramidal obstacles. The study optimizes the most convenient configuration and arrangement that allow for the increase of the heat-transfer surface and to make the flow homogeneous in order to generate turbulence zones inside the SFAC air cavity. The result shows that the thermal performances of the cubic form are close to those of the spherical obstacles. Another set of simulations was performed to evaluate the performances of the cubic shape baffles for three orientation angles equal to 0°, 22.5°, and 45°, respectively. Each configuration has three forms of arrangement with a relative roughness pitch (b/a) varying between 2, 4, and 6. The results of the simulation study showed that the relative roughness pitch, the Reynolds number, as well as the angle of orientation influence the performance and the operation of the SFAC. The results of the simulations showed that the combination of an orientation of 45° with a roughness pitch of b/a = 2 increases the SFAC thermal performances, which can reach 85%.

Suggested Citation

  • Walid Rouissi & Nabiha Naili & Mohamed Jarray & Majdi Hazami, 2021. "CFD Numerical Investigation of a New Solar Flat Air-Collector Having Different Obstacles with Various Configurations and Arrangements," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, September.
  • Handle: RePEc:hin:jnlmpe:9991808
    DOI: 10.1155/2021/9991808
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9991808.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9991808.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9991808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asim Ahmad & Om Prakash & Shailesh Kumar Sarangi & Prashant Singh Chauhan & Rajeshwari Chatterjee & Shubham Sharma & Raman Kumar & Sayed M. Tag & Abhinav Kumar & Bashir Salah & Syed Sajid Ullah, 2023. "Thermal and CFD Analyses of Sustainable Heat Storage-Based Passive Greenhouse Dryer Operating in No-Load Condition," Sustainability, MDPI, vol. 15(15), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9991808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.