IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8520503.html
   My bibliography  Save this article

An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step Deteriorating Jobs and Sequence-Dependent Setup Times

Author

Listed:
  • Hua Xuan
  • Huixian Zhang
  • Bing Li

Abstract

This paper studies a flexible flowshop scheduling problem with step-deteriorating jobs and sequence-dependent setup times (FFSP-SDJ&SDST) where there are multiple unrelated parallel machines at each stage. The actual processing time of each job is modeled as a step function of its starting time. An integer programming model is first formulated with the objective of minimizing the total weighted completion time. Since this problem is NP-complete, it becomes an interesting and challenging topic to develop effective approximation algorithms for solving it. The artificial bee colony (ABC) algorithm has been successfully applied to solve both continuous and combinatorial optimization problems with the advantages of fewer control parameters and ease of implementation. So, an improved discrete artificial bee colony algorithm is proposed. In this algorithm, a dynamic generation mechanism of initial solutions is designed based on job permutation encoding. A genetic algorithm and a modified variable neighborhood search are introduced, respectively, to obtain new solutions for the employed and onlooker bees. A greedy heuristic is proposed to generate the solutions of the scout bees. Finally, to verify the performance of the proposed algorithm, an orthogonal test is performed to optimize the parameter settings. Simulation results on different scale problems demonstrate that the proposed algorithm is more effective compared against several presented algorithms from the existing literatures.

Suggested Citation

  • Hua Xuan & Huixian Zhang & Bing Li, 2019. "An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step Deteriorating Jobs and Sequence-Dependent Setup Times," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, December.
  • Handle: RePEc:hin:jnlmpe:8520503
    DOI: 10.1155/2019/8520503
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8520503.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8520503.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8520503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Li & Gai-Ge Wang & Helong Yu, 2021. "Sorting-Based Discrete Artificial Bee Colony Algorithm for Solving Fuzzy Hybrid Flow Shop Green Scheduling Problem," Mathematics, MDPI, vol. 9(18), pages 1-30, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8520503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.