IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8164083.html
   My bibliography  Save this article

Improved Adaptive Holonic Particle Swarm Optimization

Author

Listed:
  • Hao Li
  • Hongbin Jin
  • Hanzhong Wang
  • Yanyan Ma

Abstract

For the first time , the Holonic Particle Swarm Optimization (HPSO ) algorithm applies multiagent theory about the improvement in the PSO algorithm and achieved good results. In order to further improve the performance of the algorithm, this paper proposes an improved Adaptive Holonic Particle Swarm Optimization (AHPSO) algorithm. Firstly, a brief review of the HPSO algorithm is carried out, and the HPSO algorithm can be further studied in three aspects: grouping strategy, iteration number setting, and state switching discrimination. The HPSO algorithm uses an approximately uniform grouping strategy that is the simplest but does not consider the connections between particles. And if the particles with larger or smaller differences are grouped together in different search stages, the search efficiency will be improved. Therefore, this paper proposes a grouping strategy based on information entropy and system clustering and combines two grouping strategies with corresponding search methods. The performance of the HPSO algorithm depends on the setting of the number of iterations. If it is too small, it is difficult to search for the optimal and it wastes so many computing resources. Therefore, this paper constructs an adaptive termination condition that causes the particles to terminate spontaneously after convergence. The HPSO algorithm only performs a conversion from extensive search to exact search and still has the potential to fall into local optimum. This paper proposes a state switching condition to improve the probability that the algorithm jumps out of the local optimum. Finally, AHPSO and HPSO are compared by using 22 groups of standard test functions. AHPSO is faster in convergence than HPSO, and the number of iterations of AHPSO convergence is employed in HPSO. At this point, there exists a large gap between HPSO and the optimal solution, i.e., AHPSO can have better algorithm efficiency without setting the number of iterations.

Suggested Citation

  • Hao Li & Hongbin Jin & Hanzhong Wang & Yanyan Ma, 2019. "Improved Adaptive Holonic Particle Swarm Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-22, December.
  • Handle: RePEc:hin:jnlmpe:8164083
    DOI: 10.1155/2019/8164083
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8164083.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8164083.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8164083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. Mounica & Y. P. Obulesu, 2022. "Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application," Energies, MDPI, vol. 15(12), pages 1-25, June.
    2. Tunis, Sean & Hanna, Eve & Neumann, Peter J. & Toumi, Mondher & Dabbous, Omar & Drummond, Michael & Fricke, Frank-Ulrich & Sullivan, Sean D. & Malone, Daniel C. & Persson, Ulf & Chambers, James D., 2021. "Variation in market access decisions for cell and gene therapies across the United States, Canada, and Europe," Health Policy, Elsevier, vol. 125(12), pages 1550-1556.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8164083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.