IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7620948.html
   My bibliography  Save this article

An Empirical Comparison of Multiple Linear Regression and Artificial Neural Network for Concrete Dam Deformation Modelling

Author

Listed:
  • Mingjun Li
  • Junxing Wang

Abstract

Deformation predicting models are essential for evaluating the health status of concrete dams. Nevertheless, the application of the conventional multiple linear regression model has been limited due to the particular structure, random loading, and strong nonlinear deformation of concrete dams. Conversely, the artificial neural network (ANN) model shows good adaptability to complex and highly nonlinear behaviors. This paper aims to evaluate the specific performance of the multiple linear regression (MLR) and artificial neural network (ANN) model in characterizing concrete dam deformation under environmental loads. In this study, four models, namely, the multiple linear regression (MLR), stepwise regression (SR), backpropagation (BP) neural network, and extreme learning machine (ELM) model, are employed to simulate dam deformation from two aspects: single measurement point and multiple measurement points, approximately 11 years of historical dam operation records. Results showed that the prediction accuracy of the multipoint model was higher than that of the single point model except the MLR model. Moreover, the prediction accuracy of the ELM model was always higher than the other three models. All discussions would be conducted in conjunction with a gravity dam study.

Suggested Citation

  • Mingjun Li & Junxing Wang, 2019. "An Empirical Comparison of Multiple Linear Regression and Artificial Neural Network for Concrete Dam Deformation Modelling," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, April.
  • Handle: RePEc:hin:jnlmpe:7620948
    DOI: 10.1155/2019/7620948
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7620948.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7620948.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7620948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indy Man Kit Ho & Kai Yuen Cheong & Anthony Weldon, 2021. "Predicting student satisfaction of emergency remote learning in higher education during COVID-19 using machine learning techniques," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-27, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7620948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.