IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7356740.html
   My bibliography  Save this article

Study on the Strata Movement Rule of the Ultrathick and Weak Cementation Overburden in Deep Mining by Similar Material Simulation: A Case Study in China

Author

Listed:
  • Guojian Zhang
  • Guangli Guo
  • Yi’nan Lv
  • Yaqiang Gong

Abstract

In the deep mining areas of western China, there exist ultrathick and weak cementation strata in the overburdens above the Jurassic coal seams, and the overburden lithology is generally moderately a little weaker than the medium-hard strata. Yet, the practical measurement indicates that the surface movement rule in this area displays the specialty that is apparently inconsistent with its lithology, which increases the uncertainty of safe production in coal mines. In this study, the similar material and numerical simulations were conducted to investigate the movement rule and failure pattern of the ultrathick and weak cementation overburden. In addition, the photographing scale transformation-time baseline parallax (PST-TBP) method was used to monitor the similar material model to makeup for the lacks of Xi'an Jiaotong University Digital Close-range Industrial Photogrammetry System (XJTUDP) software. The findings of this study can be summarized as follows. (1) To some extent, the PST-TBP method can makeup for the deficiency of the XJTUDP software because the measurement accuracy of the PST-TBP method is 0.47 mm. (2) The height of the caving zone is approximately 66 m, and the height of the water suture zone is about 112 m, which is obviously larger than that of the medium-hard and soft overburden in eastern-central China. (3) The first breaking span of the immediate roof reaches 120 m, the cyclic fracturing length is about 60 m, and the separation occurred at 43 m and 66 m above the coal seam. (4) The failure pattern of the ultrathick and weak cementation overburden is “beam-arch shell,” and the failure boundary is arch. (5) The Zhidan group sandstone and Jurassic sandstone formations have strong control effects. The Zhidan group sandstone is the main control stratum and the Jurassic sandstone formation is the secondary-control stratum. The research results provide an insight into guiding the safe mining of deep coal in the ultrathick and weak cementation overburden.

Suggested Citation

  • Guojian Zhang & Guangli Guo & Yi’nan Lv & Yaqiang Gong, 2020. "Study on the Strata Movement Rule of the Ultrathick and Weak Cementation Overburden in Deep Mining by Similar Material Simulation: A Case Study in China," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-21, April.
  • Handle: RePEc:hin:jnlmpe:7356740
    DOI: 10.1155/2020/7356740
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7356740.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7356740.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7356740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqiang Gong & Guangli Guo & Liping Wang & Guojian Zhang & Guangxue Zhang & Zhen Fang, 2022. "Numerical Study on the Surface Movement Regularity of Deep Mining Underlying the Super-Thick and Weak Cementation Overburden: A Case Study in Western China," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    2. Guojian Zhang & Zhiyang Wang & Guangli Guo & Wei Wei & Fugang Wang & Leilei Zhong & Yaqiang Gong, 2022. "Study on Regional Strata Movement during Deep Mining of Erdos Coal Field and Its Control," IJERPH, MDPI, vol. 19(22), pages 1-32, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7356740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.