IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5599624.html
   My bibliography  Save this article

An Optimal Design Method for Compliant Mechanisms

Author

Listed:
  • Ngoc Le Chau
  • Ngoc Thoai Tran
  • Thanh-Phong Dao

Abstract

Compliant mechanisms are crucial parts in precise engineering but modeling techniques are restricted by a high complexity of their mechanical behaviors. Therefore, this paper devotes an optimal design method for compliant mechanisms. The integration method is a hybridization of statistics, finite element method, artificial intelligence, and metaheuristics. In order to demonstrate the superiority of the method, one degree of freedom is considered as a study object. Firstly, numerical datasets are achieved by the finite element method. Subsequently, the main design parameters of the mechanism are identified via analysis of variance. Desirability of both displacement and frequency of the mechanism is determined, and then, they are embedded inside a fuzzy logic system to combine into a single fitness function. Then, the relationship between the fine design variables and the fitness function is modeled using the adaptive network-based fuzzy inference system. Next, the single fitness function is maximized via moth-flame optimization algorithm. The optimal results determined that the frequency is 79.517 Hz and displacement is 1.897 mm. In terms of determining the global optimum solution, the current method is compared with the Taguchi, desirability, and Taguchi-integrated fuzzy methods. The results showed that the current method is better than those methods. Additionally, the devoted method outperforms the other metaheuristic algorithms such as TLBO, Jaya, PSOGSA, SCA, ALO, and LAPO in terms of faster convergence. The result of this study will be considered to apply for multiple-degrees-of-freedom compliant mechanisms in future work.

Suggested Citation

  • Ngoc Le Chau & Ngoc Thoai Tran & Thanh-Phong Dao, 2021. "An Optimal Design Method for Compliant Mechanisms," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-18, March.
  • Handle: RePEc:hin:jnlmpe:5599624
    DOI: 10.1155/2021/5599624
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5599624.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5599624.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5599624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5599624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.