IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/485028.html
   My bibliography  Save this article

A New Mathematical Model for Pressure Transient Analysis in Stress-Sensitive Reservoirs

Author

Listed:
  • Junjie Ren
  • Ping Guo

Abstract

For stress-sensitive reservoir, the permeability decreases with the increase of the effective overburden pressure, and pressure transient analysis based on constant rock properties, especially permeability, can lead to significant errors. In this paper, according to the permeability-pressure relationship described by a power function instead of the popularly used exponential function, a new mathematical model for transient fluid flow in stress-sensitive reservoirs is established. The numerical solution is obtained by the fully implicit finite difference method which has been validated by some published analytical solutions before it is used to compute pressure transient responses for stress-sensitive reservoirs. Pressure response curves are plotted and the effects of relevant parameters on both pressure drawdown and buildup responses have been studied. The presented model could provide an alternative method for understanding and predicting the performances for stress-sensitive reservoirs.

Suggested Citation

  • Junjie Ren & Ping Guo, 2014. "A New Mathematical Model for Pressure Transient Analysis in Stress-Sensitive Reservoirs," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-14, April.
  • Handle: RePEc:hin:jnlmpe:485028
    DOI: 10.1155/2014/485028
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/485028.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/485028.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/485028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgenii Kozhevnikov & Evgenii Riabokon & Mikhail Turbakov, 2021. "A Model of Reservoir Permeability Evolution during Oil Production," Energies, MDPI, vol. 14(9), pages 1-16, May.
    2. Evgenii Vasilevich Kozhevnikov & Mikhail Sergeevich Turbakov & Evgenii Pavlovich Riabokon & Vladimir Valerevich Poplygin, 2021. "Effect of Effective Pressure on the Permeability of Rocks Based on Well Testing Results," Energies, MDPI, vol. 14(8), pages 1-20, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:485028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.