IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4214379.html
   My bibliography  Save this article

Collapse Risk Analysis of Deep Foundation Pits in Metro Stations Using a Fuzzy Bayesian Network and a Fuzzy AHP

Author

Listed:
  • Guohua Zhang
  • Chengtang Wang
  • Yuyong Jiao
  • Hao Wang
  • Weimin Qin
  • Wu Chen
  • Guoqiang Zhong

Abstract

Collapse risk analysis is of great significance for ensuring construction safety in foundation pits. This study proposes a comprehensive methodology for dynamic risk analysis of foundation pit collapse during construction based on a fuzzy Bayesian network (FBN) and a fuzzy analytical hierarchy process (FAHP). Firstly, the potential risk factors contributing to foundation pit collapse are identified based on the results of statistical analysis of foundation pit collapse cases, expert inquiry, and fault tree analysis. Then, a FAHP and improved expert elicitation considering a confidence index are adopted to elicit the probability parameters of the BN. On this basis, quantitative risk reasoning and sensitivity analysis of foundation pit collapse are achieved by means of fuzzy Bayesian inference. Finally, an actual deep foundation pit in a metro station was used to illustrate a specific application of this approach, and the results were in accordance with the field observations and numerical simulation results. The proposed approach can provide effective decision-making support for planners and engineers, which is vital to the prevention and control of the occurrence of the foundation pit collapse accidents.

Suggested Citation

  • Guohua Zhang & Chengtang Wang & Yuyong Jiao & Hao Wang & Weimin Qin & Wu Chen & Guoqiang Zhong, 2020. "Collapse Risk Analysis of Deep Foundation Pits in Metro Stations Using a Fuzzy Bayesian Network and a Fuzzy AHP," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, April.
  • Handle: RePEc:hin:jnlmpe:4214379
    DOI: 10.1155/2020/4214379
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4214379.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4214379.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4214379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Changjian Chen & Wei Zou & Ping Geng & Wenqi Gu & Feiyun Yuan & Chuan He, 2023. "Study on Seismic Damage Risk Assessment of Mountain Tunnel Based on the Extension Theory," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4214379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.