IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3528952.html
   My bibliography  Save this article

Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

Author

Listed:
  • YangBeibei Ji
  • Chao Mo
  • Wanjing Ma
  • Dabin Liao

Abstract

Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD) of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

Suggested Citation

  • YangBeibei Ji & Chao Mo & Wanjing Ma & Dabin Liao, 2016. "Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, May.
  • Handle: RePEc:hin:jnlmpe:3528952
    DOI: 10.1155/2016/3528952
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/3528952.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/3528952.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/3528952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gu, Xinxin, 2021. "Perimeter traffic control for single urban congested region with macroscopic fundamental diagram and boundary conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3528952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.