IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3412723.html
   My bibliography  Save this article

Structural Optimization Design of Large Wind Turbine Blade considering Aeroelastic Effect

Author

Listed:
  • Yuqiao Zheng
  • Yongyong Cao
  • Chengcheng Zhang
  • Zhe He

Abstract

This paper presents a structural optimization design of the realistic large scale wind turbine blade. The mathematical simulations have been compared with experimental data found in the literature. All complicated loads were applied on the blade when it was working, which impacts directly on mixed vibration of the wind rotor, tower, and other components, and this vibration can dramatically affect the service life and performance of wind turbine. The optimized mathematical model of the blade was established in the interaction between aerodynamic and structural conditions. The modal results show that the first six modes are flapwise dominant. Meanwhile, the mechanism relationship was investigated between the blade tip deformation and the load distribution. Finally, resonance cannot occur in the optimized blade, as compared to the natural frequency of the blade. It verified that the optimized model is more appropriate to describe the structure. Additionally, it provided a reference for the structural design of a large wind turbine blade.

Suggested Citation

  • Yuqiao Zheng & Yongyong Cao & Chengcheng Zhang & Zhe He, 2017. "Structural Optimization Design of Large Wind Turbine Blade considering Aeroelastic Effect," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-7, October.
  • Handle: RePEc:hin:jnlmpe:3412723
    DOI: 10.1155/2017/3412723
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3412723.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3412723.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3412723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yewen Chen & Shuni Zhou & Chang Cai & Weilong Wang & Yuheng Hao & Teng Zhou & Xinbao Wang & Qingan Li, 2023. "Study on the Rotation Effect on the Modal Performance of Wind Turbine Blades," Energies, MDPI, vol. 16(3), pages 1-11, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3412723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.