IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1604130.html
   My bibliography  Save this article

Asphalt Pavement Pothole Detection and Segmentation Based on Wavelet Energy Field

Author

Listed:
  • Penghui Wang
  • Yongbiao Hu
  • Yong Dai
  • Mingrui Tian

Abstract

Potholes are one type of pavement surface distresses whose assessment is essential for developing road network maintenance strategies. Existing methods for automatic pothole detection either rely on expensive and high-maintenance equipment or could not segment the pothole accurately. In this paper, an asphalt pavement pothole detection and segmentation method based on energy field is put forward. The proposed method mainly includes two processes. Firstly, the wavelet energy field of the pavement image is constructed to detect the pothole by morphological processing and geometric criterions. Secondly, the detected pothole is segmented by Markov random field model and the pothole edge is extracted accurately. This methodology has been implemented in a MATLAB prototype, trained, and tested on 120 pavement images. The results show that it can effectively distinguish potholes from cracks, patches, greasy dirt, shadows, and manhole covers and accurately segment the pothole. For pothole detection, the method reaches an overall accuracy of 86.7%, with 83.3% precision and 87.5% recall. For pothole segmentation, the overlap degree between the extracted pothole region and the original pothole region is mostly more than 85%, which accounts for 88.6% of the total detected pavement pothole images.

Suggested Citation

  • Penghui Wang & Yongbiao Hu & Yong Dai & Mingrui Tian, 2017. "Asphalt Pavement Pothole Detection and Segmentation Based on Wavelet Energy Field," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, February.
  • Handle: RePEc:hin:jnlmpe:1604130
    DOI: 10.1155/2017/1604130
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/1604130.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/1604130.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/1604130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boštjan Kovačič & Damjan Doler & Drago Sever, 2021. "Innovative Business Model for the Management of Airports in Purpose to Identify Runway Damage in Time," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    2. Boštjan Kovačič & Damjan Doler & Drago Sever, 2021. "The Innovative Model of Runway Sustainable Management on Smaller Regional Airports," Sustainability, MDPI, vol. 13(2), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1604130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.