IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/101059.html
   My bibliography  Save this article

Analysis of Road Traffic Network Cascade Failures with Coupled Map Lattice Method

Author

Listed:
  • Yanan Zhang
  • Yingrong Lu
  • Guangquan Lu
  • Peng Chen
  • Chuan Ding

Abstract

In recent years, there is growing literature concerning the cascading failure of network characteristics. The object of this paper is to investigate the cascade failures on road traffic network, considering the aeolotropism of road traffic network topology and road congestion dissipation in traffic flow. An improved coupled map lattice (CML) model is proposed. Furthermore, in order to match the congestion dissipation, a recovery mechanism is put forward in this paper. With a real urban road traffic network in Beijing, the cascading failures are tested using different attack strategies, coupling strengths, external perturbations, and attacked road segment numbers. The impacts of different aspects on road traffic network are evaluated based on the simulation results. The findings confirmed the important roles that these characteristics played in the cascading failure propagation and dissipation on road traffic network. We hope these findings are helpful to find out the optimal road network topology and avoid cascading failure on road network.

Suggested Citation

  • Yanan Zhang & Yingrong Lu & Guangquan Lu & Peng Chen & Chuan Ding, 2015. "Analysis of Road Traffic Network Cascade Failures with Coupled Map Lattice Method," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, October.
  • Handle: RePEc:hin:jnlmpe:101059
    DOI: 10.1155/2015/101059
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/101059.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/101059.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/101059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:101059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.