IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/8176746.html
   My bibliography  Save this article

Partial Differential Equations-Based Iterative Denoising Algorithm for Movie Images

Author

Listed:
  • Pingli Sun
  • Chenxia Wang
  • Min Li
  • Lanqi Liu

Abstract

Film video noise can usually be defined as the error information visible on the video image, caused by the digital signal system. This distortion is inevitably present in the video obtained by various camera equipment. Noise reduction techniques are important preprocessing processes in many video processing applications, and its main goal is to reduce the noise contained in a video image while preserving as much of its edge and texture information as possible. In this paper, we describe in detail the principles of the space-time noise reduction filter, propose a 3D-filter algorithm for Gaussian noise, an improved 3D-filter algorithm based on the 3D-BDP (bloom-deep-split) filter for mixed noise, and a filter algorithm for luminance and color noise in low-brightness scenes. By dissecting the partial differential equation (PDE) denoising process, we establish a new iterative denoising algorithm. The partial differential equation method can be considered as the iterative denoising of the filter, and the first stage of the new algorithm uses wavelet-domain adaptive Wiener filter as the filtering base and achieves good results by adjusting the parameters. The proposed model in this paper is compared with the existing denoising model, and the analysis results show that the model proposed in this section can effectively remove multiplicative noise. The experimental report shows that the parameters set by the algorithm have some stability and can achieve good processing results for multiple images, which is an advantage over the partial differential equation method for denoising. The second stage of the algorithm uses the appropriate partial differential equation method to remove the pseudo-Gibbs in the first stage, which further improves the performance of the algorithm. After the image containing Gaussian noise is processed by the new algorithm, the pseudo-Gibbs effect, which often occurs in wavelet denoising, is eliminated, and the step effect, which occurs in partial differential equation denoising, is avoided; the details are better preserved, and the peak signal-to-noise ratio is improved, and a large number of experiments show that it is an effective denoising method.

Suggested Citation

  • Pingli Sun & Chenxia Wang & Min Li & Lanqi Liu, 2021. "Partial Differential Equations-Based Iterative Denoising Algorithm for Movie Images," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-10, September.
  • Handle: RePEc:hin:jnlamp:8176746
    DOI: 10.1155/2021/8176746
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2021/8176746.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2021/8176746.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8176746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:8176746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.