IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/7511245.html
   My bibliography  Save this article

Image Processing Method Based on Chaotic Encryption and Wavelet Transform for Planar Design

Author

Listed:
  • Yiying Liu
  • Young Chun Ko

Abstract

This paper provides an in-depth study and analysis of image processing for graphic design through chaotic encryption combined with a wavelet transform algorithm. Firstly, the traditional Mallat algorithm is optimized; since the mean value of the transform coefficients generated after the wavelet transform of the image is used as the initial value of the chaotic system to iterate, when the image is modified, then the mean value of the wavelet coefficients will also change, and the final iteration comes out as two different sequences using the property that the chaotic system is extremely sensitive to the initial conditions, so the algorithm has a certain sensitivity to tampering and localization effect. The image of the encrypted graphic design is decrypted by the chaos decryption system, and the final image information of the graphic design is obtained. In terms of the security of the graphic design image itself, the complex dynamical properties of chaos are fully utilized to encrypt it, and the algorithm has a good encryption effect after statistical characteristic analysis, attack complexity, difference analysis, adjacent pixel correlation analysis, and key sensitivity analysis. The plaintext image is decomposed in odd-even sequence using the boosting algorithm to get the sequence with an even index and the sequence with an odd index; then, the diffusion algorithm is applied to the two sequences by the prediction and update algorithm, and this process is repeated many times to get the two ciphertext sequences after scrambling, merging these two sequences, and matrixing them to get the ciphertext image. Finally, the testing of the embedded planar designed image revolves around four aspects, namely, image processing, tamper sensitivity, robustness, and imperceptibility, to examine the designed planar designed image system. In the diffusion manipulation, the key matrix for diffusion is obtained using the threshold processing method of the Local Binary Pattern (LBP) algorithm for the matrices generated by the Logistic Chaos system, which improves the randomness of the algorithm. The experimental results verify the effectiveness and security of the algorithm.

Suggested Citation

  • Yiying Liu & Young Chun Ko, 2021. "Image Processing Method Based on Chaotic Encryption and Wavelet Transform for Planar Design," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-12, October.
  • Handle: RePEc:hin:jnlamp:7511245
    DOI: 10.1155/2021/7511245
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2021/7511245.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2021/7511245.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/7511245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:7511245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.