IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/4464985.html
   My bibliography  Save this article

Adaptive Extraction of Oil Painting Texture Features Based on Reaction Diffusion Equation

Author

Listed:
  • Qicai Huang

Abstract

The oil painting retrieval technology based on the reaction diffusion equation has attracted widespread attention in the fields of oil painting processing and pattern recognition. The description and extraction of oil painting information and the classification method of oil paintings are two important processes in content-based oil painting retrieval. Inspired by the restoration and decomposition functional model of equal oil painting, we propose a reaction diffusion equation model. The new model contains two reaction diffusion equations with different principal parts. One principal part is total variation diffusion, which is used to remove noise. The other main part is thermal diffusion, which is used to modify the source term of the denoising reaction-diffusion equation to achieve the effect of protecting the texture of the oil painting. The interaction of the two reaction-diffusion equations finally achieves denoising while maintaining the boundaries and textures. Under the framework of the above reaction diffusion equation model, we introduce Laplace flow to replace the original total variation flow, so that the new denoising reaction diffusion equation combines the isotropic diffusion and total variation flow of the thermal reaction diffusion equation to achieve the effect of adaptive theoretical research. Using regularization methods and methods, we, respectively, get the well-posedness of the two model solutions, which provides the necessary preparation for numerical calculations. Based on the statistical theory and classification principles of support vector machines, combined with the characteristics of oil painting classification, the research and analysis are carried out from the three important aspects of kernel function, training algorithm, and multiclass classifier algorithm that affect the classification effect and speed. Numerical experiments show that the given filter model has a better processing effect on images with different types and different degrees of noise pollution. On this basis, an oil painting classification system based on texture features is designed, combined with an improved gray-level cooccurrence matrix algorithm and a multiclass support vector machine classification model, to extract, train, and classify oil paintings. Experiments with three types of oil paintings prove that the system can achieve a good oil painting classification effect. Different from the original model, the new model is based on the framework of reaction-diffusion equations. In addition, the new model has good effects in removing step effects, maintaining boundaries and denoising, especially in maintaining texture.

Suggested Citation

  • Qicai Huang, 2021. "Adaptive Extraction of Oil Painting Texture Features Based on Reaction Diffusion Equation," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-11, November.
  • Handle: RePEc:hin:jnlamp:4464985
    DOI: 10.1155/2021/4464985
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2021/4464985.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2021/4464985.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/4464985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:4464985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.