IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/1454547.html
   My bibliography  Save this article

Application of EEG Signal Recognition Method Based on Duffing Equation in Psychological Stress Analysis

Author

Listed:
  • Min Chai
  • Lei Ba

Abstract

Based on the study of the feature extraction algorithm based on the multiple empirical mode decomposition of the Duffing equation, this paper proposes a corresponding improved algorithm, completes the identification and analysis of the psychological pressure dimension space under the audiovisual induction method, and designs two typical psychological types of music and pictures. Based on the stress induction experiment, an audiovisual-induced psychological stress recognition system based on EEG (electroencephalogram) signals was built. Aiming at the problem that the spatial uniform sampling method cannot well reflect the dynamic characteristics of the multivariate EEG signal, based on the Duffing equation, a nonuniform sampling algorithm that adaptively selects the projection direction is proposed. At present, the use of the Duffing equation to detect weak unknown signals is to select a set of fixed parameters. Analysis of these two aspects to determine the parameters of the system is based on the parameter analysis of the Duffing equation oscillator. Due to the sensitivity of the Duffing equation to the initial value, the choice of parameters has a great influence on the detection effect. In response to this situation, the relationship between the parameters and initial values of the Duffing equation is analyzed. From the relationship between the parameters and the initial values, the influence of different parameters on the detection effect is analyzed to verify the superiority of the current equation parameters. First, the multichannel EEG signal is nonuniformly sampled multiempirical modal decomposition, and an effective intrinsic modal function is selected to extract the mental stress EEG characteristics. Experimental results show that the EEG signal recognition algorithm based on the Duffing equation effectively extracts EEG signal features and improves the classification accuracy of mental stress EEG signals.

Suggested Citation

  • Min Chai & Lei Ba, 2021. "Application of EEG Signal Recognition Method Based on Duffing Equation in Psychological Stress Analysis," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-10, September.
  • Handle: RePEc:hin:jnlamp:1454547
    DOI: 10.1155/2021/1454547
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2021/1454547.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2021/1454547.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1454547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:1454547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.