IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/1431491.html
   My bibliography  Save this article

Automatic Algorithm for Fractal Plant Art Image Similarity Feature Generation

Author

Listed:
  • Zhizhe Liu
  • Luo Sun
  • Miaochao Chen

Abstract

With the popularity of smart devices and the Internet, the volume of multimedia data is growing rapidly, and content-based image retrieval (CBIR) can search for similar images from large-scale images to realize the utilization of the data. For data owners, outsourcing the management and maintenance of image data to cloud service providers can effectively reduce costs, but there is a privacy leakage problem. In this paper, we focus on image feature extraction, index design, and image similarity recognition methods under a dual server model with content-based image security similarity recognition as the research topic, the work done such as proposing a BOVW (Bag of Visual Word) feature-based image security similarity recognition scheme. The scheme combines SIFT (scale-invariant feature transform) feature secure extraction and locally sensitive hashing algorithm to achieve secure extraction of BOVW features of images. To protect the BOVW features of images, an inverted index based on word frequency division is designed, the index is stored in chunks, and an image secure similarity recognition scheme based on CNN (convolutional neural networks) features is proposed. The scalable hash index based on dimensional division is designed based on the image CNN features secure extraction algorithm. The security and performance of the proposed scheme are theoretically analyzed and experimentally verified. Based on different image datasets, the impact of different parameters on the performance of the scheme is tested, and optimized parameters are given. The experimental results show that the proposed scheme in this paper can effectively improve the efficiency of analyzing the similarity of plant botanical art images compared to the existing schemes.

Suggested Citation

  • Zhizhe Liu & Luo Sun & Miaochao Chen, 2021. "Automatic Algorithm for Fractal Plant Art Image Similarity Feature Generation," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-9, November.
  • Handle: RePEc:hin:jnlamp:1431491
    DOI: 10.1155/2021/1431491
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/amp/1431491.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/amp/1431491.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1431491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:1431491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.