IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8283178.html
   My bibliography  Save this article

Improved Grey Particle Swarm Optimization and New Luus-Jaakola Hybrid Algorithm Optimized IMC-PID Controller for Diverse Wing Vibration Systems

Author

Listed:
  • Nailu Li
  • Hua Yang
  • Anle Mu

Abstract

The PID control plays important role in wing vibration control systems. However, how to efficiently optimize the PID parameters for different kinds of wing vibration systems is still an open issue for control designers. The problem of PID control optimization is first converted into internal mode control based PID (IMC-PID) parameters optimization problem for complex wing vibration systems. To solve this problem, a novel optimization technique, called GNPSO is proposed based on the hybridization of improved grey particle swarm optimization (GPSO) and new Luus-Jaakola algorithm (NLJ). The original GPSO is modified by using small population size/iteration number, employing new grey analysis rule and designing new updating formula of acceleration coefficients. The hybrid GNPSO benefits improved global exploration of GPSO and strong local search of new Luus-Jaakola (NLJ), so as to avoid arbitrary and inefficient search of global optimum and prevent the trap in local optimum. Diverse wing vibration systems, including linear system, nonlinear system and multiple-input-multiple-output system are considered to verify the effectiveness of proposed method. Simulation results show that GNPSO optimized method obtains improved vibration control performance, stronger robustness and wide applicability on all system cases, compared to existing evolutionary algorithm based tuning methods. Enhanced optimization convergence and computation efficiency obtained by GNPSO tuning technique are also verified by statistical analysis.

Suggested Citation

  • Nailu Li & Hua Yang & Anle Mu, 2019. "Improved Grey Particle Swarm Optimization and New Luus-Jaakola Hybrid Algorithm Optimized IMC-PID Controller for Diverse Wing Vibration Systems," Complexity, Hindawi, vol. 2019, pages 1-21, December.
  • Handle: RePEc:hin:complx:8283178
    DOI: 10.1155/2019/8283178
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/8283178.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/8283178.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8283178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Mei-Qi & Ma, Wen-Li & Li, Yuan & Chen, En-Li & Liu, Peng-Fei & Zhang, Ming-Zhi, 2022. "Dynamic analysis of piecewise nonlinear systems with fractional differential delay feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8283178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.