IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7906047.html
   My bibliography  Save this article

Optimization of the Rapid Design System for Arts and Crafts Based on Big Data and 3D Technology

Author

Listed:
  • Haihan Zhou
  • Zhihan Lv

Abstract

In this paper, to solve the problem of slow design of arts and crafts and to improve design efficiency and aesthetics, the existing big data and 3D technology are used to conduct an in-depth analysis of the optimization of the rapid design system of arts and crafts machine salt baking. In the system requirement analysis, the functional modules of this system are identified as nine functional modules such as design terminology management system and external information import function according to the actual usage requirements. In the system design, the overall structure design, database design, and functional module design of the system are comprehensively elaborated, and the key issues such as 3D display and home layout generation algorithm based on reinforcement learning are analyzed and designed. In the implementation part of the system, the overall construction of the system and the composition of functional modules are introduced in detail and the main functional modules of the system are presented with interface diagrams. In the system implementation part, the overall system construction and functional module composition are introduced in detail, the main functional modules of the system are shown with interface diagrams, codes, and algorithms, and the specific implementation process of 3D display and soft layout algorithms are also explained in detail. The process of Surface Mount Technology (SMT) big data processing and analysis is designed, and the design of SMT production line data collection scheme and real-time data processing architecture is completed. Based on the characteristics of SMT production line data, the K-means algorithm is used to detect data outliers and verify the accuracy of the method; also, the Spark-based association rule printing parameter recommendation model is designed, and the efficiency of the Apriori algorithm is significantly improved by parallelization.

Suggested Citation

  • Haihan Zhou & Zhihan Lv, 2021. "Optimization of the Rapid Design System for Arts and Crafts Based on Big Data and 3D Technology," Complexity, Hindawi, vol. 2021, pages 1-10, May.
  • Handle: RePEc:hin:complx:7906047
    DOI: 10.1155/2021/7906047
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/7906047.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/7906047.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/7906047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7906047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.