IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7890968.html
   My bibliography  Save this article

Event-Triggered Adaptive Backstepping Control for Strict-Feedback Nonlinear Systems with Zero Dynamics

Author

Listed:
  • Bo Xu
  • Xiaoping Liu
  • Huanqing Wang
  • Yucheng Zhou

Abstract

This paper focuses on the problem of event-triggered control for a class of uncertain nonlinear strict-feedback systems with zero dynamics via backstepping technique. In the design procedure, the adaptive controller and the triggering event are designed at the same time to remove the assumption of the input-to-state stability with respect to the measurement errors. Besides, we propose an assumption to deal with the problem of zero dynamics. Three different event-triggered control strategies are designed, which guarantees that all the closed-loop signals are globally bounded. The effectiveness of the proposed methods is illustrated and compared using simulation examples.

Suggested Citation

  • Bo Xu & Xiaoping Liu & Huanqing Wang & Yucheng Zhou, 2019. "Event-Triggered Adaptive Backstepping Control for Strict-Feedback Nonlinear Systems with Zero Dynamics," Complexity, Hindawi, vol. 2019, pages 1-13, October.
  • Handle: RePEc:hin:complx:7890968
    DOI: 10.1155/2019/7890968
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7890968.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7890968.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7890968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Xiaoqing & Park, Ju H. & Zhou, Lei, 2018. "Event-triggered control of discrete-time switched linear systems with packet losses," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 344-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    2. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    3. Li, Jinghan & Zhao, Jun, 2022. "Bumpless transfer based event-triggered control for switched linear systems with state-dependent switching," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Pan, Yingnan & Yang, Guang-Hong, 2019. "Event-based output tracking control for fuzzy networked control systems with network-induced delays," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 513-530.
    5. Xu, Xiaozeng & Zhang, Hongbin & Zheng, Qunxian & Chen, Wei, 2022. "Global exponential stability and H∞ control of limit cycle for switched affine systems under time-dependent switching signal," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    6. Zheng, Qunxian & Xu, Shengyuan & Zhang, Zhengqiang, 2020. "Nonfragile H∞ observer design for uncertain nonlinear switched systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Zhou, Yu & Pan, Yingnan & Li, Shubo & Liang, Hongjing, 2020. "Event-triggered cooperative containment control for a class of uncertain non-identical networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    8. Zhou, Lei & Ding, Hui & Xiao, Xiaoqing, 2021. "Input-to-state stability of discrete-time switched nonlinear systems with generalized switching signals," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Liu, Yanhong & Zhi, Huimin & Wei, Jumei & Zhu, Xunlin & Zhu, Quanxin, 2020. "Event-triggered control for linear continuous switched singular systems," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    10. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    11. Lü, Shao-Yu & Jin, Xiao-Zheng & Wang, Hai & Deng, Chao, 2021. "Robust adaptive estimation and tracking control for perturbed cyber-physical systems against denial of service," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    12. Yan, Shen & Yang, Fan & Gu, Zhou, 2020. "Derivative-based event-triggered control for networked systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    13. Zhao, Zhi-Ye & Jin, Xiao-Zheng & Wu, Xiao-Ming & Wang, Hai & Chi, Jing, 2022. "Neural network-based fixed-time sliding mode control for a class of nonlinear Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    14. Pan, Yingnan & Yang, Guang-Hong, 2019. "Event-based reduced-order fuzzy filtering for networked control systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 71-83.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7890968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.