IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6840639.html
   My bibliography  Save this article

Novel Fuzzy Neural Nonsingular Terminal Sliding Mode Control of MEMS Gyroscope

Author

Listed:
  • Zhe Wang
  • Juntao Fei

Abstract

This paper attempts to improve the robustness and rapidity of a microgyroscope sensor by presenting a double-loop recurrent fuzzy neural network based on a nonsingular terminal sliding mode controller. Compared with the traditional control method, the proposed strategy can obtain faster dynamic response speed and lower steady-state error with high robustness in the presence of system uncertainties and external disturbances. A nonlinear terminal sliding mode controller is designed to guarantee finite-time high-precision convergence of the sliding surface and meanwhile to eliminate the effect of singularity. Moreover, an exponential approach law is used to accelerate the convergence rate of the system to the sliding surface. For suppressing the chattering, the symbolic function in the ideal sliding mode is replaced by the saturation function. To suppress the effect of model uncertainties and external disturbances, a double-loop recurrent fuzzy neural network is introduced to approximate and compensate system nonlinearities for the gyroscope sensor. At the same time, the double-loop recurrent fuzzy neural network can effectively accelerate the speed of parameter learning by introducing the adaptive mechanism. Simulation results indicate that the control system with the proposed controller is easily implemented, and it has higher tracking precision and considerable robustness to model uncertainties compared with the existing controllers.

Suggested Citation

  • Zhe Wang & Juntao Fei, 2019. "Novel Fuzzy Neural Nonsingular Terminal Sliding Mode Control of MEMS Gyroscope," Complexity, Hindawi, vol. 2019, pages 1-15, December.
  • Handle: RePEc:hin:complx:6840639
    DOI: 10.1155/2019/6840639
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6840639.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6840639.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6840639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juntao Fei & Xiao Liang, 2018. "Adaptive Backstepping Fuzzy Neural Network Fractional-Order Control of Microgyroscope Using a Nonsingular Terminal Sliding Mode Controller," Complexity, Hindawi, vol. 2018, pages 1-12, September.
    2. Juntao Fei & Zhilin Feng, 2019. "Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunmei Fang & Fang Chen & Juntao Fei, 2021. "Multiple Loop Fuzzy Neural Network Fractional Order Sliding Mode Control of Micro Gyroscope," Mathematics, MDPI, vol. 9(17), pages 1-20, September.
    2. Xiao Liang & Juntao Fei, 2019. "Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    3. Hongbin Wang & Bo Su & Yueling Wang & Jing Gao, 2019. "Adaptive Sliding Mode Fixed-Time Tracking Control Based on Fixed-Time Sliding Mode Disturbance Observer with Dead-Zone Input," Complexity, Hindawi, vol. 2019, pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6840639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.