IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4124049.html
   My bibliography  Save this article

Simulation Study on the Influence of Fire Partition on Curtain Wall Temperature in Super High-Rise Buildings in China

Author

Listed:
  • Tongtong Zhang
  • Di Cao
  • Zhihan Lv

Abstract

The poor fire resistance characteristic of super high-rise curtain wall makes the curtain wall design one of the main approaches to improve its capacity for prevention and control over fire and smoke spread. The propagation of smoke leads to the increase in the temperature of the curtain wall on the upper and lower floors of the fire floor and consequently leads to glass fracture and other serious consequences. Current codes have control over fire resistance performance and size of fire partition materials but do not include requirements on the position of curtain walls on floors. By changing the position of fire partition in curtain walls, the paper carries out three comparative simulation experiments on two forms of fire partition: spandrel and fire prevention cornice. Besides, PyroSim is used to calculate the comparative simulation of fire and smoke spread and obtain the data on temperature variation nephogram and monitoring points in the center line of glass curtain walls during different fire scenarios, so as to discuss the influence of different positions of spandrels and fire canopy on fire hazard and smoke. This study finds out the following: fire canopy can better prevent the longitudinal spread of fire smoke than spandrels. The fire canopy above spandrels can reduce the flue-gas temperature. The higher the spandrels above floors, the faster the temperature of the central lines of glass curtain walls above fire floors reduced. However, the higher the spandrels above floors, the more uneven the distributions of high-temperature regions and low-temperature regions, thus leading to the increase in horizontal temperature differences of glass panels. This research conclusion can be taken as a reference for fire protection design of super high-rise glass curtain wall.

Suggested Citation

  • Tongtong Zhang & Di Cao & Zhihan Lv, 2021. "Simulation Study on the Influence of Fire Partition on Curtain Wall Temperature in Super High-Rise Buildings in China," Complexity, Hindawi, vol. 2021, pages 1-16, July.
  • Handle: RePEc:hin:complx:4124049
    DOI: 10.1155/2021/4124049
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/4124049.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/4124049.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/4124049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4124049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.