IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3603172.html
   My bibliography  Save this article

Analysis on Nonlinear Dynamic Characteristic of Synchronous Generator Rotor System

Author

Listed:
  • Xiaodong Wang
  • Caiqin Song

Abstract

This paper focuses on the swing oscillation process of the synchronous generator rotors in a three-machine power system. With the help of bifurcation diagram, time history, phase portrait, Poincaré section, and frequency spectrum, the complex dynamical behaviors and their evolution process are detected clearly in this power system with varying perturbation related parameters and different system parameters. Furthermore, combining the qualitative and quantitative characteristics of the chaotic motion, different paths leading to chaos coexisting in this system have been found. The Wolf method has been introduced to calculate the corresponding largest Lyapunov exponent, which is used to verify the occurrence of chaotic motion. These results obtained in this paper will contribute to a better understanding of nonlinear dynamic behaviors of synchronous generator rotors in a three-machine power system.

Suggested Citation

  • Xiaodong Wang & Caiqin Song, 2019. "Analysis on Nonlinear Dynamic Characteristic of Synchronous Generator Rotor System," Complexity, Hindawi, vol. 2019, pages 1-14, January.
  • Handle: RePEc:hin:complx:3603172
    DOI: 10.1155/2019/3603172
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3603172.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3603172.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3603172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hsien-Keng & Lin, Tsung-Nan & Chen, Juhn-Horng, 2005. "Dynamic analysis, controlling chaos and chaotification of a SMIB power system," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1307-1315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahverdiev, E.M. & Hashimova, L.H. & Hashimova, N.T., 2008. "Chaos synchronization in some power systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 827-834.
    2. Yuwen Dong & Shuai Song & Xiaona Song & Inés Tejado, 2024. "Observer-Based Adaptive Fuzzy Quantized Control for Fractional-Order Nonlinear Time-Delay Systems with Unknown Control Gains," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    3. Li, Fan & Liu, Shuai & Li, Xiaola, 2023. "Effect of phase shift on the dynamics of a single-machine infinite-bus power system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    4. Anitha Karthikeyan & Karthikeyan Rajagopal, 2017. "Chaos Control in Fractional Order Smart Grid with Adaptive Sliding Mode Control and Genetically Optimized PID Control and Its FPGA Implementation," Complexity, Hindawi, vol. 2017, pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3603172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.