IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1895141.html
   My bibliography  Save this article

Plastic Dynamical Model for Bulk Metallic Glasses

Author

Listed:
  • Shaowen Yao
  • Zhibo Cheng

Abstract

Based on previous experimental results of the plastic dynamic analysis of metallic glasses upon compressive loading, a dynamical model is proposed. This model includes the sliding speed of shear bands in the plastically strained metallic glasses, the shear resistance of shear bands, the internal friction resulting from plastic deformation, and the influences from the testing machine. This model analysis quantitatively predicts that the loading rate can influence the transition of the plastic dynamics in metallic glasses from chaotic (low loading rate range) to stable behavior (high loading rate range), which is consistent with the previous experimental results on the compression tests of a metallic glass. Moreover, we investigate the existence of a nonconstant periodic solution for plastic dynamical model of bulk metallic glasses by using Manásevich–Mawhin continuation theorem.

Suggested Citation

  • Shaowen Yao & Zhibo Cheng, 2019. "Plastic Dynamical Model for Bulk Metallic Glasses," Complexity, Hindawi, vol. 2019, pages 1-7, December.
  • Handle: RePEc:hin:complx:1895141
    DOI: 10.1155/2019/1895141
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1895141.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1895141.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1895141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cun Chen & Xueping Li & Jingli Ren, 2019. "Complex Dynamical Behaviors in a Spring-Block Model with Periodic Perturbation," Complexity, Hindawi, vol. 2019, pages 1-14, March.
    2. Cun Chen & Shaokang Guan & Liying Zhang, 2018. "Complex Dynamical Behavior in the Shear-Displacement Model for Bulk Metallic Glasses during Plastic Deformation," Complexity, Hindawi, vol. 2018, pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cun Chen & Xueping Li & Jingli Ren, 2019. "Complex Dynamical Behaviors in a Spring-Block Model with Periodic Perturbation," Complexity, Hindawi, vol. 2019, pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1895141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.