IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1448-d108535.html
   My bibliography  Save this article

Distributed Coordinated Control of Offshore Doubly Fed Wind Turbine Groups Based on the Hamiltonian Energy Method

Author

Listed:
  • Bing Wang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
    School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Qiuxuan Wu

    (School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Min Tian

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Qingyi Hu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

Abstract

To support doubly fed wind turbine (DFWT) groups in offshore wind farms, this paper proposes a distributed coordinated control based on the Hamiltonian energy theory. This strategy provides global stability to closed-loop systems and facilitates output synchronization. First, a model of a DFWT is realized as a port-controlled Hamiltonian system with dissipation (PCH-D), and the single-machine model is expanded into a multi-machine model of a wind turbine group. Then, by using the design methodology of distributed Hamiltonian systems, a distributed coordinated control is presented for a multi-machine PCH-D system. Furthermore, to investigate failures in wind turbine groups, they are divided into two cases: the separation of failed machines from the system, and the grid-connected operation of failed machines after a fault. These cases correspond to undirected and directed graphs, respectively. Finally, simulations prove that distributed coordinated control enhances the reliability and autonomy of wind turbine groups in offshore wind farms.

Suggested Citation

  • Bing Wang & Qiuxuan Wu & Min Tian & Qingyi Hu, 2017. "Distributed Coordinated Control of Offshore Doubly Fed Wind Turbine Groups Based on the Hamiltonian Energy Method," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1448-:d:108535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tzay-An Shiau & Ji-Kai Chuen-Yu, 2016. "Developing an Indicator System for Measuring the Social Sustainability of Offshore Wind Power Farms," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
    2. Sergio Fragoso & Juan Garrido & Francisco Vázquez & Fernando Morilla, 2017. "Comparative Analysis of Decoupling Control Methodologies and H ∞ Multivariable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Wang & Zhen Tang & Xiang Gao & Weiyang Liu & Xianhui Chen, 2019. "Distributed Control Strategy of the Leader-Follower for Offshore Wind Farms under Fault Conditions," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    2. Ciprian Sorandaru & Sorin Musuroi & Flaviu Mihai Frigura-Iliasa & Doru Vatau & Marian Dordescu, 2019. "Analysis of the Wind System Operation in the Optimal Energetic Area at Variable Wind Speed over Time," Sustainability, MDPI, vol. 11(5), pages 1-16, February.
    3. Bing Wang & Min Tian & Tingjun Lin & Yinlong Hu, 2018. "Distributed Complementary Control Research of Wind Turbines in Two Offshore Wind Farms," Sustainability, MDPI, vol. 10(2), pages 1-21, February.
    4. Bing Wang & Zhen Tang & Weiyang Liu & Qiuqiao Zhang, 2020. "A Distributed Cooperative Control Strategy of Offshore Wind Turbine Groups with Input Time Delay," Sustainability, MDPI, vol. 12(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    2. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Michael Stein & Michele Acciaro, 2020. "Value Creation through Corporate Sustainability in the Port Sector: A Structured Literature Analysis," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    4. Bing Wang & Min Tian & Tingjun Lin & Yinlong Hu, 2018. "Distributed Complementary Control Research of Wind Turbines in Two Offshore Wind Farms," Sustainability, MDPI, vol. 10(2), pages 1-21, February.
    5. Laura Montalbán-Domingo & Madeleine Aguilar-Morocho & Tatiana García-Segura & Eugenio Pellicer, 2020. "Study of Social and Environmental Needs for the Selection of Sustainable Criteria in the Procurement of Public Works," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    6. Ivan Ligardo-Herrera & Tomás Gómez-Navarro & Hannia Gonzalez-Urango, 2019. "Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 679-701, September.
    7. Hannia Gonzalez-Urango & Mónica García-Melón, 2017. "A Multicriteria Model to Evaluate Strategic Plans for the Nautical and Naval Industry in Cartagena de Indias, Colombia," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    8. Loomis, John J. & Knaus, Michael & Dziedzic, Maurício, 2019. "Integrated quantification of forest total economic value," Land Use Policy, Elsevier, vol. 84(C), pages 335-346.
    9. Chiuhsiang Joe Lin & Remba Yanuar Efranto & Melina Andriani Santoso, 2021. "Identification of Workplace Social Sustainability Indicators Related to Employee Ergonomics Perception in Indonesian Industry," Sustainability, MDPI, vol. 13(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1448-:d:108535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.