Advanced Search
MyIDEAS: Login

Optimizing the Physical, Mechanical and Hygrothermal Performance of Compressed Earth Bricks

Contents:

Author Info

  • Esther Obonyo

    ()
    (Rinker School of Building Construction, PO Box 115703, Gainesville, FL 32611, USA)

Registered author(s):

    Abstract

    The paper is based on findings from research that assesses the potential for enhancing the performance of compressed earth bricks. A set of experiments was carried out to assess the potential for enhancing the bricks’ physical, mechanical and hygrothermal performance through the design of an optimal stabilization strategy. Three different types of bricks were fabricated: soil-cement, soil-cement-lime, and soil-cement-fiber. The different types of bricks did not exhibit significant differences in performances when assessed on the basis of porosity, density, water absorption, and compressive strength. However, upon exposure to elevated moisture and temperature conditions, the soil-cement-fiber bricks had the highest residual strength (87%). The soil-cement and soil-cement-lime bricks had residual strength values of 48.19 and 46.20% respectively. These results suggest that, like any other cement-based material, compressed earth brick properties are affected by hydration-triggered chemical and structural changes occurring in the matrix that would be difficult to isolate using tests that focus on “bulk” changes. The discussion in this paper presents findings from a research effort directed at quantifying the specific changes through an analysis of the microstructure.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.mdpi.com/2071-1050/3/4/596/pdf
    Download Restriction: no

    File URL: http://www.mdpi.com/2071-1050/3/4/596/
    Download Restriction: no

    Bibliographic Info

    Article provided by MDPI, Open Access Journal in its journal Sustainability.

    Volume (Year): 3 (2011)
    Issue (Month): 4 (March)
    Pages: 596-604

    as in new window
    Handle: RePEc:gam:jsusta:v:3:y:2011:i:4:p:596-604:d:11901

    Contact details of provider:
    Web page: http://www.mdpi.com/

    Related research

    Keywords: hygrothermal loads; compressed earth bricks; deterioration; microstructure;

    Find related papers by JEL classification:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Esther Obonyo & Joseph Exelbirt & Malarvizhi Baskaran, 2010. "Durability of Compressed Earth Bricks: Assessing Erosion Resistance Using the Modified Spray Testing," Sustainability, MDPI, Open Access Journal, vol. 2(12), pages 3639-3649, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:4:p:596-604:d:11901. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.