IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3790-d1386789.html
   My bibliography  Save this article

Simulation-Based Resilience Evaluation for Urban Rail Transit Transfer Stations

Author

Listed:
  • Xinyao Yin

    (School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China)

  • Junhua Chen

    (School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China)

  • Yuexuan Li

    (School of Traffic and Transportation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Hai Dian District, Beijing 100044, China)

Abstract

Disturbances often occur in transfer stations; however, little is known about the weaknesses of transfer stations and their ability to cope with passenger flows. Therefore, this paper introduces resilience into the study of transfer stations to enhance their emergency response processes and improve the sustainability of URT networks. It establishes a two-level fuzzy evaluation model, using the G1 weighting method, to assess resilience across various scenarios (daily operation, heavy passenger flow, and emergencies) and identify weaknesses; then, corresponding enhancement strategies are proposed. First, factor sets are established according to resilience stages, including rapidity before disturbance, robustness, redundancy, resourcefulness, and rapidity after disturbance. Using the G1 method, the weight matrix for each factor is calibrated, and a membership degree matrix is determined based on their affiliation with the review set. Multiplying the weight matrix and membership degree matrix yields the resilience value. We apply these steps to a representative station with the assistance of Anylogic simulation in calculating the hard-to-obtain data, yielding a peak-hour resilience value of 0.3425, which indicates a “poor” rating in the review set. By combining the peak-hour resilience with resilience curves under different multiples of peak-hour flows, an enhancement prioritization strategy is proposed for the station, which can act as a reference for the management of URT transfer stations.

Suggested Citation

  • Xinyao Yin & Junhua Chen & Yuexuan Li, 2024. "Simulation-Based Resilience Evaluation for Urban Rail Transit Transfer Stations," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3790-:d:1386789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3790/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    resilience; sustainability of urban rail transit; two-level fuzzy evaluation model; G1 weighting method; Anylogic simulation;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3790-:d:1386789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.