IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3522-d1381109.html
   My bibliography  Save this article

A Multi-Objective Optimization Method for Single Intersection Signals Considering Low Emissions

Author

Listed:
  • Shan Wang

    (Intelligent Transport System (ITS) R & D Center, Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd., Shanghai 200125, China)

  • Yu Zhao

    (Intelligent Transport System (ITS) R & D Center, Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd., Shanghai 200125, China)

  • Shaoqi Zhang

    (China FAW Group Co., Ltd., Changchun 130011, China)

  • Dongbo Wang

    (Bureau of Transportation and Construction, TEDA Administrative Commission, Tianjin 300450, China)

  • Chao Wang

    (Bureau of Transportation and Construction, TEDA Administrative Commission, Tianjin 300450, China)

  • Bowen Gong

    (Department of Traffic Information and Control Engineering, Jilin University, Changchun 130022, China
    Jilin Engineering Research Center for Intelligent Transportation System, Changchun 130022, China)

Abstract

The exponential growth of urban centers has exacerbated the prevalence of traffic-related issues. This surge has amplified the conflict between the escalating need for travel among individuals and the constricted availability of road infrastructure. Consequently, the escalation of traffic accidents and the exacerbation of environmental pollution have emerged as increasingly pressing concerns. Urban road intersections, serving as pivotal junctures for vehicle convergence and dispersal, have remained a focal point for scholarly inquiry regarding enhanced operational efficacy and safety. Concurrently, vehicles navigating intersections are subject to external influences, such as pedestrian crossings and signal controls, causing frequent fluctuations in their operational dynamics. These fluctuations contribute to heightened exhaust emissions, exacerbating air pollution and posing health risks to pedestrians frequenting these intersections. A reasonable signal timing scheme can enable more vehicles to pass through the intersection safely and smoothly and reduce the pollutants generated by transportation. Therefore, optimizing signal timing schemes at intersections to alleviate traffic problems is a topic that needs to be studied urgently. In this paper, the emission model based on specific power is analyzed. Through an analysis of the correlation between specific power distribution intervals and the emission rates of individual pollutants, it has been observed that vehicle emission rates are at their lowest during idle speed, progressively increasing with rising vehicle speeds. Investigation into specific power distribution based on variables, such as vehicle type, frequency of stops, and varying delays, has led to the deduction that the peak specific power of vehicles at intersections consistently occurs within the (0, 1) interval. Furthermore, it has been established that high-saturation intersections exhibit higher peak specific power compared to low-saturation intersections.

Suggested Citation

  • Shan Wang & Yu Zhao & Shaoqi Zhang & Dongbo Wang & Chao Wang & Bowen Gong, 2024. "A Multi-Objective Optimization Method for Single Intersection Signals Considering Low Emissions," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3522-:d:1381109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3522/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3522-:d:1381109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.