IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3473-d1379956.html
   My bibliography  Save this article

Multi-Temporal Analysis of the Impact of Summer Forest Dynamics on Urban Heat Island Effect in Yan’an City

Author

Listed:
  • Xinyi Wang

    (Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China)

  • Yuan Chen

    (Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China)

  • Zhichao Wang

    (Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China)

  • Bo Xu

    (Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China)

  • Zhongke Feng

    (Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China)

Abstract

In this study, MODIS land products and China land cover datasets were used to extract normalized difference vegetation index, land surface temperature, and vegetation cover type in Yan’an City during the summers of 2017–2022. On this basis, analysis of spatial change and correlation were carried out as a way to study the mitigation effect on urban heat islands in Yan’an City with forest. The study showed that: (1) The coverage of normalized difference vegetation index over 0.4 in summer in Yan’an City increased from 59.38% to 69.12%, and the vegetation showed good growth conditions. It has a spatial distribution pattern of more in the south and less in the north. (2) The proportion of the urban heat island in Yan’an City increased from 15.51% to 16.86%. Urban heat island intensity fluctuated year by year, with the maximum urban heat island intensity of 6.26 °C appearing in 2019. It has a spatial distribution pattern of less in the south and less in the north. The transition rate of temperature field grade from low to high is 73.32%, and the transition rate to low is only 0.31%. (3) There is a negative correlation between land surface temperature and normalized difference vegetation index in Yan’an City. Vegetation has a mitigating effect on the UHI and the best cooling effect among the vegetation is shown by forest. The cooling effect of forest in Yan’an City is attenuated by an increase in distance, and the effective range is greater than 1000 m. In this study, the regulation effect of forest on the urban heat island was obtained by digging deeper into the intrinsic connection between spatial change in vegetation cover and land surface temperature change in Yan’an City. It provides an important reference for the formulation of meteorological protection policy as well as the promotion of sustainable development of the urban ecological environment and is of guiding significance for future urban planning and ecological construction.

Suggested Citation

  • Xinyi Wang & Yuan Chen & Zhichao Wang & Bo Xu & Zhongke Feng, 2024. "Multi-Temporal Analysis of the Impact of Summer Forest Dynamics on Urban Heat Island Effect in Yan’an City," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3473-:d:1379956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3473/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3473-:d:1379956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.