IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2920-d1368112.html
   My bibliography  Save this article

Applying an Analytic Hierarchy Process and a Geographic Information System for Assessment of Land Subsidence Risk Due to Drought: A Case Study in Ca Mau Peninsula, Vietnam

Author

Listed:
  • Doan Quang Tri

    (Journal of Hydro-Meteorology, Information and Data Center, Viet Nam Meteorological and Hydrological Administration, Hanoi 10000, Vietnam)

  • Nguyen Van Nhat

    (Journal of Hydro-Meteorology, Information and Data Center, Viet Nam Meteorological and Hydrological Administration, Hanoi 10000, Vietnam)

  • Quach Thi Thanh Tuyet

    (Journal of Hydro-Meteorology, Information and Data Center, Viet Nam Meteorological and Hydrological Administration, Hanoi 10000, Vietnam)

  • Ha T. T. Pham

    (Faculty of Environmental Sciences, University of Science, Vietnam National University (VNU), Hanoi 10000, Vietnam)

  • Pham Tien Duc

    (National Center for Hydrometeorological Forecasting, Viet Nam Meteorological and Hydrological Administration, Hanoi 10000, Vietnam)

  • Nguyen Thanh Thuy

    (Faculty of Water Resources Engineering, Thuyloi University, Hanoi 10000, Vietnam)

Abstract

The increase in extreme weather events causes secondary hazards that can influence people and the environment enormously. The Ca Mau Peninsula is known as one of the areas most severely affected by drought, and excessive groundwater exploitation is one of the reasons leading to a higher risk of land subsidence. This study uses the Delphi method and the KAMET rule table to analyze and select indicators that affect subsidence. The study uses the analytic hierarchy process (AHP) analytical hierarchy method to evaluate the weights of influencing factors, combined with geographic information system (GIS) technology to overlay the map layers of the main influencing factors and build a subsidence risk warning zoning map of the study area. The influencing factors selected to evaluate the impact on land subsidence in the study area during the drought period included geological structure, soil characteristics, groundwater flow exploitation, water flow in the dry season, current land use status, and evaporation in the dry season. The weights of these factors were evaluated based on the synthesis of relevant documents as well as consultation with experts. The results indicate that nearly two-thirds of the Ca Mau Peninsula area is currently at very low or low risk of subsidence. Meanwhile, 23% of the area is at medium risk, nearly 9% is at high risk, and 0.1% of the study area is at very high risk. Subsidence risk warning zoning maps can provide a visual and general overview of areas with high subsidence risk, supporting managers in making reference plans for socio-economic development in the Ca Mau Peninsula.

Suggested Citation

  • Doan Quang Tri & Nguyen Van Nhat & Quach Thi Thanh Tuyet & Ha T. T. Pham & Pham Tien Duc & Nguyen Thanh Thuy, 2024. "Applying an Analytic Hierarchy Process and a Geographic Information System for Assessment of Land Subsidence Risk Due to Drought: A Case Study in Ca Mau Peninsula, Vietnam," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2920-:d:1368112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    2. Hongnian Chen & Xianfeng Tan & Yan Zhang & Bo Hu & Shuming Xu & Zhenfen Dai & Zhengxuan Zhang & Zhiye Wang & Yawei Zhang, 2023. "Study on Groundwater Function Zoning and Sustainable Development and Utilization in Jining City Planning Area," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    2. Emma Colven, 2023. "A political ecology of speculative urbanism: The role of financial and environmental speculation in Jakarta’s water crisis," Environment and Planning A, , vol. 55(2), pages 490-510, March.
    3. Thanti Octavianti & Katrina Charles, 2019. "The evolution of Jakarta’s flood policy over the past 400 years: The lock-in of infrastructural solutions," Environment and Planning C, , vol. 37(6), pages 1102-1125, September.
    4. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    5. Bao Wenchao & Chen Beier & Yan Minghui, 2024. "Analysis of Multi-Factor Dynamic Coupling and Government Intervention Level for Urbanization in China: Evidence from the Yangtze River Economic Belt," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-18, January.
    6. Ellen Minkman, 2023. "Resolving impasses in policy translation: Shall we adjust the idea or the process?," Environment and Planning C, , vol. 41(2), pages 333-350, March.
    7. Roshan Wahab & Robert Tiong, 2017. "Multi-variate residential flood loss estimation model for Jakarta: an approach based on a combination of statistical techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 779-804, March.
    8. Mira Kelly-Fair & Sucharita Gopal & Magaly Koch & Hermin Pancasakti Kusumaningrum & Muhammad Helmi & Dinda Khairunnisa & Les Kaufman, 2022. "Analysis of Land Use and Land Cover Changes through the Lens of SDGs in Semarang, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-23, June.
    9. Leon HAUSER & Roberta BONI & Philip S.J. MINDERHOUD & Pietro TEATINI & Marie-Noëlle WOILLEZ & Rafael ALMAR & Selasi Yao AVORNYO & Kwasi APPEANING ADDO, 2023. "A scoping study on coastal vulnerability to relative sealevel rise in the Gulf of Guinea," Working Paper da6cc701-670f-4e44-bf9c-c, Agence française de développement.
    10. Rizkiana Sidqiyatul Hamdani & Sudharto Prawata Hadi & Iwan Rudiarto, 2021. "Progress or Regress? A Systematic Review on Two Decades of Monitoring and Addressing Land Subsidence Hazards in Semarang City," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    11. Agga Destya Arlingga, 2020. "Analysis of Willingness to Pay and Socio-Economic Factors for Sanitation Facility in Indonesia," Working Papers in Economics and Development Studies (WoPEDS) 202002, Department of Economics, Padjadjaran University, revised Jan 2020.
    12. Sutasinee Intui & Shinya Inazumi & Suttisak Soralump, 2022. "Sustainability of Soil/Ground Environment under Changes in Groundwater Level in Bangkok Plain, Thailand," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    13. Sylvana Santos & Jaime Cabral & Ivaldo Pontes Filho, 2012. "Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 421-439, October.
    14. Yibin Huang & Yanmei Li & Peter S. K. Knappett & Daniel Montiel & Jianjun Wang & Manuel Aviles & Horacio Hernandez & Itza Mendoza-Sanchez & Isidro Loza-Aguirre, 2022. "Water Quality Assessment Bias Associated with Long-Screened Wells Screened across Aquifers with High Nitrate and Arsenic Concentrations," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    15. Yong Liu & Hai-Jun Huang, 2013. "Characterization and mechanism of regional land subsidence in the Yellow River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 687-709, September.
    16. Pius Kirui & Samson Oiro & Hunja Waithaka & Patroba Odera & Björn Riedel & Markus Gerke, 2022. "Detection, characterization, and analysis of land subsidence in Nairobi using InSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 213-236, August.
    17. Kian Goh, 2020. "Flows in formation: The global-urban networks of climate change adaptation," Urban Studies, Urban Studies Journal Limited, vol. 57(11), pages 2222-2240, August.
    18. Shengtong Di & Chao Jia & Pengpeng Ding & Shaopeng Zhang & Xiao Yang, 2022. "Experimental research on macroscopic and mesoscopic evolution mechanism of land subsidence induced by groundwater exploitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 453-474, August.
    19. M. Sayyaf & M. Mahdavi & O. Barani & S. Feiznia & B. Motamedvaziri, 2014. "Simulation of land subsidence using finite element method: Rafsanjan plain case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 309-322, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2920-:d:1368112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.