IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1160-d1329487.html
   My bibliography  Save this article

Green and Sustainable Industrial Internet of Things Systems Leveraging Wake-Up Radio to Enable On-Demand IoT Communication

Author

Listed:
  • Clément Rup

    (CRAN CNRS UMR 7039, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France)

  • Eddy Bajic

    (CRAN CNRS UMR 7039, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France)

Abstract

The industrial Internet of things (IIoT) is a major lever in Industry 4.0 development, where reducing the carbon footprint and energy consumption has become crucial for modern companies. Today’s IIoT device infrastructure wastes large amounts of energy on wireless communication, limiting device lifetime and increasing power consumption and battery requirements. Communication capabilities seriously affect the responsiveness and availability of autonomous IoT devices when collecting data and retrieving commands to/from higher-level applications. Thus, the objective of optimizing communication remains paramount; in addition to typical optimization methods, such as algorithms and protocols, a new concept is emerging, known as wake-up radio (WuR). WuR provides novel on-demand radio communication schemes that can increase device efficiency. By expanding the lifespan of IoT devices while maintaining high reactivity and communication performance, the WuR approach paves the way for a “place-and-forget” IoT device deployment methodology that combines a small carbon footprint with an extended lifetime and highly responsive functionality. WuR technology, when applied to IoT devices, facilitates green IIoT, thereby enabling the emergence of a novel on-demand IoT (OD-IoT) concept. This article presents an analysis of the state-of-the-art WuR technology within the green IoT paradigm and details the OD-IoT concept. Furthermore, this review provides an overview of WuR applications and their impact on the IIoT, including relevant industry use cases. Finally, we describe our experimental performance evaluation of a WuR-enabled device that is commercially available off the shelf. Specifically, we focused on the communication range and energy consumption, successfully demonstrating the applicability of WuR and the strong potential that it has and the benefits that it offers for sustainable IIoT systems.

Suggested Citation

  • Clément Rup & Eddy Bajic, 2024. "Green and Sustainable Industrial Internet of Things Systems Leveraging Wake-Up Radio to Enable On-Demand IoT Communication," Sustainability, MDPI, vol. 16(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1160-:d:1329487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1160/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1160-:d:1329487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.