IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i1p449-d1313110.html
   My bibliography  Save this article

Biosurfactants: Promising Biomolecules for Agricultural Applications

Author

Listed:
  • Maria da Glória C. Silva

    (Advanced Institute of Technology and Innovation (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Pernambuco, Brazil)

  • Anderson O. Medeiros

    (Advanced Institute of Technology and Innovation (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Pernambuco, Brazil
    Department of Chemical Engineering, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, n. 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil)

  • Attilio Converti

    (Advanced Institute of Technology and Innovation (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Pernambuco, Brazil
    Department of Civil, Chemical and Environmental Engineering, University of Genoa (UNIGE), Via Opera Pia, n. 15, 1-16145 Genova, Italy)

  • Fabiola Carolina G. Almeida

    (Advanced Institute of Technology and Innovation (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Pernambuco, Brazil)

  • Leonie A. Sarubbo

    (Advanced Institute of Technology and Innovation (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Pernambuco, Brazil
    Department of Chemical Engineering, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, n. 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
    UNICAP Icam Tech School, Catholic University of Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Pernambuco, Brazil)

Abstract

Population growth and the need for increased agricultural productivity pose a global problem. Therefore, the development of green compounds to ensure agricultural sustainability is an urgent necessity. Surfactant compounds hold significant commercial importance due to their diverse industrial uses. However, the synthetic origin of these agents limits their commercial application due to their toxicity. As a result, extensive research has focused on the production of microbial-originated green surfactants, known as biosurfactants, over the past fifteen years. These biomolecules not only offer a green alternative for agriculture but also exhibit reduced toxicity and excellent stability under specific environmental conditions. Biosurfactants can lower surface tension more effectively than synthetic surfactants. With properties such as detergency and foam formation, biosurfactants are suitable for various agricultural applications, particularly in pesticide and agrochemical formulations. They can function as biopesticides to manage pests, pathogens, phytopathogenic fungi, and weeds due to their antimicrobial activity. Moreover, plants can benefit from biosurfactant molecules and microorganisms as nutrients. They can also aid efficiently in the distribution of micronutrients and metals in the soil. They also stimulate plant immunity and are utilized for soil hydrophilization to ensure proper moisture levels and uniform fertilizer distribution. This review aims to provide valuable insights into the role and properties of biosurfactants as agricultural adjuvants, fostering the development of sustainable formulations to replace the chemical surfactants used in pesticides. For this purpose, the general aspects of global agricultural activity are initially described, followed by a discussion of pesticides, including herbicides, fungicides, and insecticide products. Next, the properties of chemical surfactants are discussed and the use of green surfactants, with emphasis on microbial biosurfactants, is demonstrated. The application of biosurfactants in the agricultural industry and trends are addressed and prospects for the application of these agents are discussed.

Suggested Citation

  • Maria da Glória C. Silva & Anderson O. Medeiros & Attilio Converti & Fabiola Carolina G. Almeida & Leonie A. Sarubbo, 2024. "Biosurfactants: Promising Biomolecules for Agricultural Applications," Sustainability, MDPI, vol. 16(1), pages 1-32, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:449-:d:1313110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renato Dias Matosinhos & Karina Cesca & Bruno Augusto Mattar Carciofi & Débora de Oliveira & Cristiano José de Andrade, 2023. "The Biosurfactants Mannosylerythritol Lipids (MELs) as Stimulant on the Germination of Lactuca sativa L," Agriculture, MDPI, vol. 13(9), pages 1-15, August.
    2. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philbert Mperejekumana & Lei Shen & Shuai Zhong & Fabien Muhirwa & Assa Nsabiyeze & Jean Marie Vianney Nsigayehe & Anathalie Nyirarwasa, 2023. "Assessing the Capacity of the Water–Energy–Food Nexus in Enhancing Sustainable Agriculture and Food Security in Burundi," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    2. Patricia Mussali-Galante & María Luisa Castrejón-Godínez & José Antonio Díaz-Soto & Ángela Patricia Vargas-Orozco & Héctor Miguel Quiroz-Medina & Efraín Tovar-Sánchez & Alexis Rodríguez, 2023. "Biobeds, a Microbial-Based Remediation System for the Effective Treatment of Pesticide Residues in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-25, June.
    3. Zheng, Yanan & Goodhue, Rachael E., 2022. "Intensive or Extensive Margin Effects? Growers’ Responses to the Restriction of High-Volatile Organic Compound (VOC) Pesticide Products in the San Joaquin Valley, California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322085, Agricultural and Applied Economics Association.
    4. Zahoor Ahmad Shah & Mushtaq Ahmad Dar & Eajaz Ahmad Dar & Chukwujekwu A. Obianefo & Arif Hussain Bhat & Mohammed Tauseef Ali & Mohamed El-Sharnouby & Mustafa Shukry & Hosny Kesba & Samy Sayed, 2022. "Sustainable Fruit Growing: An Analysis of Differences in Apple Productivity in the Indian State of Jammu and Kashmir," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    5. Ratana Sapbamrer & Jiraporn Chittrakul, 2022. "Determinants of Consumers’ Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand," IJERPH, MDPI, vol. 19(20), pages 1-11, October.
    6. Bahromiddin Husenov & Siham Asaad & Hafiz Muminjanov & Larisa Garkava-Gustavsson & Eva Johansson, 2021. "Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    7. Muyesaier Tudi & Linsheng Yang & Li Wang & Jia Lv & Lijuan Gu & Hairong Li & Wei Peng & Qiming (Jimmy) Yu & Huada (Daniel) Ruan & Qin Li & Ross Sadler & Des Connell, 2023. "Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review," Agriculture, MDPI, vol. 13(9), pages 1-27, August.
    8. Zedekiah Odira Onyando & Elizabeth Omukunda & Patrick Okoth & Sandra Khatiebi & Solomon Omwoma & Peter Otieno & Odipo Osano & Joseph Lalah, 2023. "Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    9. Beike Sumfleth & Stefan Majer & Daniela Thrän, 2023. "A Review of Trade-Offs in Low ILUC-Risk Certification for Biofuels—Towards an Integrated Assessment Framework," Sustainability, MDPI, vol. 15(23), pages 1-41, November.
    10. Agnieszka Klimek-Kopyra & Joanna Dłużniewska & Adrian Sikora, 2023. "Influence of Biofungicides Containing Microorganisms Such as Pythium oligandrum and Bacillus subtilis on Yield, Morphological Parameters, and Pathogen Suppression in Six Winter Pea Cultivars," Agriculture, MDPI, vol. 13(6), pages 1-17, May.
    11. Gamal El Afandi & Hossam Ismael & Souleymane Fall, 2024. "A Hybrid Modeling Approach for Estimating the Exposure to Organophosphate Pesticide Drift in Sangamon County, Illinois," Sustainability, MDPI, vol. 16(7), pages 1-30, March.
    12. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    13. Dimitrios Kalfas & Stavros Kalogiannidis & Olympia Papaevangelou & Katerina Melfou & Fotios Chatzitheodoridis, 2024. "Integration of Technology in Agricultural Practices towards Agricultural Sustainability: A Case Study of Greece," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    14. Yixin Shi & Siliang Xiang & Minzi Xu & Defan Huang & Jianfei Liu & Xiaocong Zhang & Ping Jiang, 2023. "Design and Experimental Study of Ball-Head Cone-Tail Injection Mixer Based on Computational Fluid Dynamics," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    15. Farhana Bibi & Azizur Rahman, 2023. "An Overview of Climate Change Impacts on Agriculture and Their Mitigation Strategies," Agriculture, MDPI, vol. 13(8), pages 1-15, July.
    16. Xiuling Ding & Apurbo Sarkar & Lipeng Li & Hua Li & Qian Lu, 2022. "Effects of Market Incentives and Livelihood Dependence on Farmers’ Multi-Stage Pesticide Application Behavior—A Case Study of Four Provinces in China," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    17. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    18. Giuseppe Gattuso & Luca Falzone & Chiara Costa & Federica Giambò & Michele Teodoro & Silvia Vivarelli & Massimo Libra & Concettina Fenga, 2022. "Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p," IJERPH, MDPI, vol. 19(12), pages 1-10, June.
    19. Qi Zhou, 2022. "Spatial-Temporal Change Characteristic Analysis and Environmental Risk Evaluation of Pesticide Application in Anhui Province," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    20. Arsene Mushagalusa Balasha & Aganze Mulume Dominique & Weremubi Mwisha Sage & Sharufa Mukonde Shadya & Janvier Zirhumana Mugisho, 2023. "Pesticide Choice and Use Patterns Among Vegetable Farmers on Idjwi Island, Eastern Democratic Republic of Congo," SAGE Open, , vol. 13(4), pages 21582440231, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:1:p:449-:d:1313110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.