IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2582-d1053186.html
   My bibliography  Save this article

Enhancing Biogas Production of Co-Digested Cattle Manure with Grass Silage from a Local Farm in Landshut, Bavaria, through Chemical and Mechanical Pre-Treatment and Its Impact on Biogas Reactor Hydraulic Retention Time

Author

Listed:
  • Verónica Hidalgo-Sánchez

    (Department of Mechanical Engineering, University of Applied Sciences Landshut, 84036 Landshut, Germany
    Department of Chemical Engineering, University of La Laguna, 38200 La Laguna, Spain)

  • Uwe Behmel

    (Department of Mechanical Engineering, University of Applied Sciences Landshut, 84036 Landshut, Germany)

  • Josef Hofmann

    (Department of Mechanical Engineering, University of Applied Sciences Landshut, 84036 Landshut, Germany)

  • María Emma Borges

    (Department of Chemical Engineering, University of La Laguna, 38200 La Laguna, Spain)

Abstract

Cattle manure usually contains a proportion of carbohydrates in the form of organic residues from incompletely digested feed and farm husbandry practices. These are not usually available for biogas production due to the long fermentation time. This paper investigates the optimal application of alkali, NaOH and KOH and mechanical pre-treatments to improve the degradation of the lignocellulosic content and the potential biogas yields from a local farm in Bavaria, Germany. Parameters such as temperature, pH, soluble chemical oxygen demand, organic acids, dry matter and volatile solids were analysed for this purpose. Alkali pre-treatments in 0.2, 0.1 and 0.05 M NaOH concentrations were tested in single mode and combined with shredding in batch experiments. The maximum increment of the soluble chemical oxygen demand during the pre-treatments took place during the first 50 h of experimentation, and it showed an improvement of 10,060.0 ± 8% mg/L s COD after the application of 0.2 M NaOH compared to the untreated substrate, which had an initial value of 2145.0 ± 8% mg/L s COD. Pre-treatments with 0.1 and 0.05 M NaOH concentrations showed similar s COD increments, with an additional 6860.0 ± 8% mg/L s COD and 8505.0 ± 8% mg/L s COD, respectively. The pH values varied strongly after the addition of the pre-treatment chemicals, with a continuous pH of 12 by 0.2 M NaOH during the 7 days of pre-treatment. Batch biogas experiments were done by applying 0.05 M NaOH and 0.05 M KOH pre-treatments in single mode and combined with shredding. The chemically pre-treated substrates showed a faster biogas production with an advantage of 18 days in comparison to the untreated cattle manure by a biogas yield of 350.0 NL/kg VS. All experiments were done under mesophilic conditions.

Suggested Citation

  • Verónica Hidalgo-Sánchez & Uwe Behmel & Josef Hofmann & María Emma Borges, 2023. "Enhancing Biogas Production of Co-Digested Cattle Manure with Grass Silage from a Local Farm in Landshut, Bavaria, through Chemical and Mechanical Pre-Treatment and Its Impact on Biogas Reactor Hydrau," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2582-:d:1053186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tawaf Ali Shah & Sabiha Khalid & Hiba-Allah Nafidi & Ahmad Mohammad Salamatullah & Mohammed Bourhia, 2023. "Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane," Sustainability, MDPI, vol. 15(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, C.M. & Marder, M. & Junges, E. & Konrad, O., 2022. "Technologies for biogas desulfurization - An overview of recent studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Gérard Merlin & Jonathan Outin & Hervé Boileau, 2021. "Co-Digestion of Extended Aeration Sewage Sludge with Whey, Grease and Septage: Experimental and Modeling Determination," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    3. Bronius Žalys & Kęstutis Venslauskas & Kęstutis Navickas & Egidijus Buivydas & Mantas Rubežius, 2023. "The Influence of CO 2 Injection into Manure as a Pretreatment Method for Increased Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2582-:d:1053186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.